ﻻ يوجد ملخص باللغة العربية
Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in Edge Localized Mode (ELM) frequency and reduction in plasma ene
Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reducti
The application of resonant magnetic perturbations (RMPs) produces splitting of the divertor strike point due to the interaction of the RMP field and the plasma field. The application of a rotating RMP field causes the strike point splitting to rotat
The interaction between Edge Localized Modes (ELMs) and Resonant Magnetic Perturbations (RMPs) is modeled with the magnetohydrodynamic code JOREK using experimental parameters from ASDEX Upgrade discharges. The ELM mitigation or suppression is optima
The impact of resonant magnetic perturbations (RMPs) on the power required to access H-mode is examined experimentally on MAST. Applying RMP in n=2,3,4 and 6 configurations causes significant delays to the timing of the L-H transition at low applied