ﻻ يوجد ملخص باللغة العربية
The impact of resonant magnetic perturbations (RMPs) on the power required to access H-mode is examined experimentally on MAST. Applying RMP in n=2,3,4 and 6 configurations causes significant delays to the timing of the L-H transition at low applied fields and prevents the transition at high fields. The experiment was primarily performed at RMP fields sufficient to cause moderate increases in ELM frequency, f mitigated/f natural~3. To obtain H-mode with RMPs at this field, an increase of injected beam power is required of at least 50% for n=3 and n=4 RMP and 100% for n=6 RMP. In terms of power threshold, this corresponds to increases of at least 20% for n=3 and n=4 RMPs and 60% for n=6 RMPs. This RMP affected power threshold is found to increase with RMP magnitude above a certain minimum perturbed field, below which there is no impact on the power threshold. Extrapolations from these results indicate large increases in the L-H power threshold will be required for discharges requiring large mitigated ELM frequency.
We study the effects of Resonant Magnetic Perturbations (RMPs) on turbulence, flows and confinement in the framework of resistive drift-wave turbulence. This work was motivated, in parts, by experiments reported at the IAEA 2010 conference [Y. Xu {it
Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reducti
The application of resonant magnetic perturbations (RMPs) produces splitting of the divertor strike point due to the interaction of the RMP field and the plasma field. The application of a rotating RMP field causes the strike point splitting to rotat
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in Edge Localized Mode (ELM) frequency and reduction in plasma ene
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=4 or n=6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in Edge Localized Mode (ELM) frequency and reduction in plasma