ﻻ يوجد ملخص باللغة العربية
We demonstrate aqueous refractive index sensing with 15 to 30 {mu}m diameter silicon nitride microdisk resonators to detect small concentrations of Li salt. A dimpled-tapered fiber is used to couple 780 nm visible light to the microdisks, in order to perform spectroscopy their optical resonances. The dimpled fiber probe allows testing of multiple devices on a chip in a single experiment. This sensing system is versatile and easy to use, while remaining competitive with other refractometric sensors. For example, from a 20 {mu}m diameter device we measure a sensitivity of 200 $pm$ 30 nm/RIU with a loaded quality factor of 1.5 $times$ 10$^4$, and a limit of detection down to (1.3 $pm$ 0.1) $times$ 10$^{-6}$ RIU.
Sensing response of individual single-crystal titania nanowires configured as chemiresistors for detecting reducing (CO, H2) and oxidizing (O2) gases is shown to be sensitive to visible light illumination. It is assumed that doping of the TiO2 nanowi
Single-walled carbon nanotubes have advantages as a nanoscale light source compatible with silicon photonics because they show room-temperature luminescence at telecom-wavelengths and can be directly synthesized on silicon substrates. Here we demonst
Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths.
Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devic
The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal