ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrability of Particle System around a Ring Source as the Newtonian Limit of a Black Ring

97   0   0.0 ( 0 )
 نشر من قبل Takahisa Igata
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The geodesic equation in the five-dimensional singly rotating black ring is non-integrable unlike the case of the Myers-Perry black hole. In the Newtonian limit of the black ring, its geodesic equation agrees with the equation of motion of a particle in the Newtonian potential due to a homogeneous ring gravitational source. In this paper, we show that the Newtonian equation of motion allows the separation of variables in the spheroidal coordinates, providing an non-trivial constant of motion quadratic in momenta. This shows that the Newtonian limit of a black ring recovers the symmetry of its geodesic system, and the geodesic chaos is caused by relativistic effects.



قيم البحث

اقرأ أيضاً

We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain thin rings, we identify a new, elasti c-type instability dominating the evolution, causing the system to settle to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected by necks which become ever thinner over time.
109 - Takahisa Igata 2020
We consider test particle motion in a gravitational field generated by a homogeneous circular ring placed in $n$-dimensional Euclidean space. We observe that there exist no stable stationary orbits in $n=6, 7, ldots, 10$ but exist in $n=3, 4, 5$ and clarify the regions in which they appear. In $n=3$, we show that the separation of variables of the Hamilton-Jacobi equation does not occur though we find no signs of chaos for stable bound orbits. Since the system is integrable in $n=4$, no chaos appears. In $n=5$, we find some chaotic stable bound orbits. Therefore, this system is nonintegrable at least in $n=5$ and suggests that the timelike geodesic system in the corresponding black ring spacetimes is nonintegrable.
We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the bla ck string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 X S^2. We wrap a spinning dipole M2-brane on the S^2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the first approximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.
74 - Takahisa Igata 2020
Newtonian gravitational potential sourced by a homogeneous circular ring in arbitrary dimensional Euclidean space takes a simple form if the spatial dimension is even. In contrast, if the spatial dimension is odd, it is given in a form that includes complete elliptic integrals. In this paper, we analyze the dynamics of a freely falling massive particle in its Newtonian potential. Focusing on circular orbits on the symmetric plane where the ring is placed, we observe that they are unstable in 4D space and above, while they are stable in 3D space. The sequence of stable circular orbits disappears at $1.6095cdots$ times the radius of the ring, which corresponds to the innermost stable circular orbit (ISCO). On the axis of symmetry of the ring, there are no circular orbits in 3D space but more than in 4D space. In particular, the circular orbits are stable between the ISCO and infinity in 4D space and between the ISCO and the outermost stable circular orbit in 5D space. There exist no stable circular orbits in 6D space and above.
Until now, rings have been detected in the Solar System exclusively around the four giant planets. Here we report the discovery of the first minor-body ring system around the Centaur object (10199) Chariklo, a body with equivalent radius 124$pm$9 km. A multi-chord stellar occultation revealed the presence of two dense rings around Chariklo, with widths of about 7 km and 3 km, optical depths 0.4 and 0.06, and orbital radii 391 and 405 km, respectively. The present orientation of the ring is consistent with an edge-on geometry in 2008, thus providing a simple explanation for the dimming of Chariklos system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partially composed of water ice. These rings may be the remnants of a debris disk, which were possibly confined by embedded kilometre-sized satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا