ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle dynamics in the Newtonian potential sourced by a homogeneous circular ring

75   0   0.0 ( 0 )
 نشر من قبل Takahisa Igata
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takahisa Igata




اسأل ChatGPT حول البحث

Newtonian gravitational potential sourced by a homogeneous circular ring in arbitrary dimensional Euclidean space takes a simple form if the spatial dimension is even. In contrast, if the spatial dimension is odd, it is given in a form that includes complete elliptic integrals. In this paper, we analyze the dynamics of a freely falling massive particle in its Newtonian potential. Focusing on circular orbits on the symmetric plane where the ring is placed, we observe that they are unstable in 4D space and above, while they are stable in 3D space. The sequence of stable circular orbits disappears at $1.6095cdots$ times the radius of the ring, which corresponds to the innermost stable circular orbit (ISCO). On the axis of symmetry of the ring, there are no circular orbits in 3D space but more than in 4D space. In particular, the circular orbits are stable between the ISCO and infinity in 4D space and between the ISCO and the outermost stable circular orbit in 5D space. There exist no stable circular orbits in 6D space and above.



قيم البحث

اقرأ أيضاً

109 - Takahisa Igata 2020
We consider test particle motion in a gravitational field generated by a homogeneous circular ring placed in $n$-dimensional Euclidean space. We observe that there exist no stable stationary orbits in $n=6, 7, ldots, 10$ but exist in $n=3, 4, 5$ and clarify the regions in which they appear. In $n=3$, we show that the separation of variables of the Hamilton-Jacobi equation does not occur though we find no signs of chaos for stable bound orbits. Since the system is integrable in $n=4$, no chaos appears. In $n=5$, we find some chaotic stable bound orbits. Therefore, this system is nonintegrable at least in $n=5$ and suggests that the timelike geodesic system in the corresponding black ring spacetimes is nonintegrable.
We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Te ukolsky code. We find excellent agreement between the two methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field theory calculations performed in the context of the Kerr/CFT correspondence.
The Kantowski-Sachs cosmological model sourced by a Skyrme field and a cosmological constant is considered in the framework of General Relativity. Assuming a constant radial profile function for the hedgehog ansatz, the Skyrme contribution to Einstei n equations is shown to be equivalent to an anisotropic fluid. Using dynamical system techniques, a qualitative analysis of the cosmological equations is presented. Physically interesting features of the model such as isotropization, bounce and recollapse are discussed.
121 - T.Tanaka , H.Tagoshi , M.Sasaki 1997
Using the post-Newtonian (PN) expansion technique of the gravitational wave perturbation around a Schwarzschild black hole, we calculate analytically the energy flux of gravitational waves induced by a particle in circular orbits up to the 5.5PN orde r, i.e. $O(v^{11})$ beyond Newtonian. By comparing the formula with numerical data, we find that the error of the 5.5PN formula is about 4% when the particle is on the last stable circular orbit. We also estimate the error $Delta N$ in the total cycle of gravitational waves from coalescing compact binaries in a laser interferometers band produced by using the post-Newtonian approximations. We find that, as for the neutron star-black hole binaries, the 4.5PN approximation gives $Delta Nalt1$ for a black hole of mass $M<40M_odot$, while it gives $Delta Nagt1$ for a black hole of mass $M>40M_{odot}$.
We determine the complete space-time metric from the bootstrapped Newtonian potential generated by a static spherically symmetric source in the surrounding vacuum. This metric contains post-Newtonian parameters which can be further used to constrain the complete underlying dynamical theory. For values of the post-Newtonian parameters within experimental bounds, the reconstructed metric appears very close to the Schwarzschild solution of General Relativity in the whole region outside the event horizon. The latter is however larger in size for the same value of the mass compared to the Schwarzschild case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا