ﻻ يوجد ملخص باللغة العربية
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here, we use ultra-stable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes $Delta u$/$ u$ to 9.2$pm$10.7$times10^{-19}$ (95$%$ confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
Interferometric gyroscope systems are being developed with the goal of measuring general-relativistic effects including frame-dragging effects. Such devices are also capable of performing searches for Lorentz violation. We summarize efforts that rela
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic freq
We study nonlinear vacuum electrodynamics in a first-order formulation proposed by Plebanski. By applying a Dirac constraint analysis, we derive an effective Hamiltonian, together with the equations of motion. We show that there exists a large class
We propose using a Stark interference technique to directly measure the odd-parity c_{0j} components of the electron sector c_{mu u} tensor of the Standard-Model Extension. This technique has been shown to be a sensitive probe of parity violation in
We use data from the T-SAGE instrument on board the MICROSCOPE space mission to search for Lorentz violation in matter-gravity couplings as described by the Lorentz violating Standard-Model Extension (SME) coefficients $(bar{a}_text{eff})_mu^w$, wher