ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold Atom Clock Test of Lorentz Invariance in the Matter Sector

319   0   0.0 ( 0 )
 نشر من قبل Peter Wolf
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peter Wolf




اسأل ChatGPT حول البحث

We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled $^{133}$Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements by 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.



قيم البحث

اقرأ أيضاً

The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundament al interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The STE-QUEST satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the Universality of Free Fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of Rb85 and Rb87. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the Eotvos parameter of at least 2x10E-15. In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources.
We use data from the T-SAGE instrument on board the MICROSCOPE space mission to search for Lorentz violation in matter-gravity couplings as described by the Lorentz violating Standard-Model Extension (SME) coefficients $(bar{a}_text{eff})_mu^w$, wher e ($mu = T,X,Y,Z$) and ($w = e,p,n$) for the electron, proton and neutron. One of the phenomenological consequences of a non-zero value of those coefficients is that test bodies of different composition fall differently in an external gravitational field. This is similar to standard tests of the universality of free fall, but with a specific signature that depends on the orbital velocity and rotation of the Earth. We analyze data from five measurement sessions of MICROSCOPE spread over a year finding no evidence for such a signature, but setting constraints on linear combinations of the SME coefficients that improve on best previous results by one to two orders of magnitude. Additionally, our independent linear combinations are different from previous ones, which increases the diversity of available constraints, paving the way towards a full decorrelation of the individual coefficients.
Possible violations of Lorentz invariance (LIV) have been investigated for a long time using the observed spectral lags of gamma-ray bursts (GRBs). However, these generally have relied on using a single photon in the highest energy range. Furthermore , the search for LIV lags has been hindered by our ignorance concerning the intrinsic time lag in different energy bands. GRB 160625B, the only burst so far with a well-defined transition from $positive$ lags to $negative$ lags provides a unique opportunity to put new constraints on LIV. Using multi-photon energy bands we consider the contributions to the observed spectral lag from both the intrinsic time lag and the lag by LIV effects, and assuming the intrinsic time lag to have a positive dependence on the photon energy, we obtain robust limits on LIV by directly fitting the spectral lag data of GRB 160625B. Here we show that these robust limits on the quantum gravity energy scales are $E_{rm QG,1}geq0.5times10^{16}$ GeV for the linear, and $E_{rm QG,2}geq1.4times10^{7}$ GeV for the quadratic LIV effects, respectively. In addition, we give for the first time a reasonable formulation of the intrinsic energy-dependent time lag.
For the purpose of searching for Lorentz-invariance violation in the minimal Standard-Model Extension, we perfom a reanalysis of data obtained from the $^{133}text{Cs}$ fountain clock operating at SYRTE. The previous study led to new limits on eight components of the $tilde{c}_{mu u}$ tensor, which quantifies the anisotropy of the proton kinetic energy. We recently derived an advanced model for the frequency shift of hyperfine Zeeman transition due to Lorentz violation and became able to constrain the ninth component, the isotropic coefficient $tilde{c}_{TT}$, which is the least well-constrained coefficient of $tilde{c}_{mu u}$. This model is based on a second-order boost Lorentz transformation from the laboratory frame to the Sun-centered frame, and it gives rise to an improvement of five orders of magnitude on $tilde{c}_{TT}$ compared to the state of the art.
We analyze a dynamics of ultracold neutrons (UCNs) caused by interactions violating Lorentz invariance within the Standard Model Extension (SME) (Colladay and Kostelecky, Phys. Rev. D55, 6760 (1997) and Kostelecky, Phys. Rev. D69, 105009 (2004)). We use the effective non-relativistic potential for interactions violating Lorentz invariance derived by Kostelecky and Lane (J. Math. Phys. 40, 6245 (1999)) and calculate contributions of these interactions to the transition frequencies of transitions between quantum gravitational states of UCNs bouncing in the gravitational field of the Earth. Using the experimental sensitivity of qBounce experiments we make some estimates of upper bounds of parameters of Lorentz invariance violation in the neutron sector of the SME which can serve as a theoretical basis for an experimental analysis. We show that an experimental analysis of transition frequencies of transitions between quantum gravitational states of unpolarized and polarized UCNs should allow to place some new constraints in comparison to the results adduced by Kostelecky and Russell in Rev. Mod. Phys. 83, 11 (2011); edition 2019, arXiv: 0801.0287v12 [hep-ph].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا