ترغب بنشر مسار تعليمي؟ اضغط هنا

Proliferation of effective interactions: decoherence-induced equilibration in a closed many-body system

266   0   0.0 ( 0 )
 نشر من قبل Pablo Ren\\'e Zangara
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the question on how weak perturbations, that are quite ineffective in small many-body systems, can lead to decoherence and hence to irreversibility when they proliferate as the system size increases. This question is at the heart of solid state NMR. There, an initially local polarization spreads all over due to spin-spin interactions that conserve the total spin projection, leading to an equilibration of the polarization. In principle, this quantum dynamics can be reversed by changing the sign of the Hamiltonian. However, the reversal is usually perturbed by non reversible interactions that act as a decoherence source. The fraction of the local excitation recovered defines the Loschmidt echo (LE), here evaluated in a series of closed $N$ spin systems with all-to-all interactions. The most remarkable regime of the LE decay occurs when the perturbation induces proliferated effective interactions. We show that if this perturbation exceeds some lower bound, the decay is ruled by an effective Fermi golden rule (FGR). Such a lower bound shrinks as $ N $ increases, becoming the leading mechanism for LE decay in the thermodynamic limit. Once the polarization stayed equilibrated longer than the FGR time, it remains equilibrated in spite of the reversal procedure.



قيم البحث

اقرأ أيضاً

We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha miltonians), our arguments imply timescales that do not increase with the system size, in contrast to previously known upper bounds. In particular we show that, for such Hamiltonians, the matrix representation of local observables in the energy basis is banded, and that this property is crucial in order to derive equilibration times that are non-negligible in macroscopic systems. Finally, we give an intuitive interpretation to recent theorems on equilibration time-scale.
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic re sonance (NMR) observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.
64 - Kazue Matsuyama 2020
In this work we report on a loss of ergodicity in a simple hopping model, motivated by the Hubbard Hamiltonian, of a many body quantum system at zero temperature, quantized in Euclidean time. We show that this quantum system may lose ergodicity at hi gh densities on a large lattice, as a result of both Pauli exclusion and strong Coulomb repulsion. In particular we study particle hopping susceptibilities and the tendency towards particle localization. It is found that the appearance and existence of quantum phase transitions in this model, in the case of high density and strong Coulomb repulsion, depends on the starting configuration of particle trajectories in the numerical simulation. We argue that this breakdown may be the Euclidean time version of a breakdown of the eigenstate thermalization hypothesis in real time quantization.
484 - B. Chiaro , C. Neill , A. Bohrdt 2019
The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL) phase. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow dephasing and logarithmic entanglement growth; th ey commonly result in slow and subtle modification of the dynamics, making their measurement challenging. Here, we experimentally characterize these properties of the MBL phase in a system of coupled superconducting qubits. By implementing phase sensitive techniques, we map out the structure of local integrals of motion in the MBL phase. Tomographic reconstruction of single and two qubit density matrices allowed us to determine the spatial and temporal entanglement growth between the localized sites. In addition, we study the preservation of entanglement in the MBL phase. The interferometric protocols implemented here measure affirmative correlations and allow us to exclude artifacts due to the imperfect isolation of the system. By measuring elusive MBL quantities, our work highlights the advantages of phase sensitive measurements in studying novel phases of matter.
We study weak ergodicity breaking in a one-dimensional, nonintegrable spin-1 XY model. We construct for it an exact, highly excited eigenstate, which despite its large energy density, can be represented analytically by a finite bond-dimension matrix product state (MPS) with area-law entanglement. Upon a quench to a finite Zeeman field, the state undergoes periodic dynamics with perfect many-body revivals, in stark contrast to other generic initial states which instead rapidly thermalize. This dynamics can be completely understood in terms of the evolution of entangled virtual spin-1/2 degrees of freedom, which in turn underpin the presence of an extensive tower of strong-eigenstate thermalization hypothesis (ETH)-violating many-body eigenstates. The resulting quantum many-body scars are therefore of novel origin. Our results provide important analytical insights into the nature and entanglement structure of quantum many-body scars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا