ترغب بنشر مسار تعليمي؟ اضغط هنا

Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields

150   0   0.0 ( 0 )
 نشر من قبل Abhinav Kumar
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Abhinav Kumar




اسأل ChatGPT حول البحث

We compute explicit rational models for some Hilbert modular surfaces corresponding to square discriminants, by connecting them to moduli spaces of elliptic K3 surfaces. Since they parametrize decomposable principally polarized abelian surfaces, they are also moduli spaces for genus-2 curves covering elliptic curves via a map of fixed degree. We thereby extend classical work of Jacobi, Hermite, Bolza etc., and more recent work of Kuhn, Frey, Kani, Shaska, Volklein, Magaard and others, producing explicit families of reducible Jacobians. In particular, we produce a birational model for the moduli space of pairs (C,E) of a genus 2 curve C and elliptic curve E with a map of degree n from C to E, as well as a tautological family over the base, for 2 <= n <= 11. We also analyze the resulting models from the point of view of arithmetic geometry, and produce several interesting curves on them.



قيم البحث

اقرأ أيضاً

208 - Jonas Bergstrom , Carel Faber , 2008
We study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure. The trace of Frobenius on the alternating sum of the etale cohomology groups of these local systems can be calculate d by counting the number of pointed curves of genus 2 with a prescribed number of Weierstrass points over the given finite field. This cohomology is intimately related to vector-valued Siegel modular forms. The corresponding scheme in level 1 was carried out in [FvdG]. Here we extend this to level 2 where new phenomena appear. We determine the contribution of the Eisenstein cohomology together with its S_6-action for the full level 2 structure and on the basis of our computations we make precise conjectures on the endoscopic contribution. We also make a prediction about the existence of a vector-valued analogue of the Saito-Kurokawa lift. Assuming these conjectures that are based on ample numerical evidence, we obtain the traces of the Hecke-operators T(p) for p < 41 on the remaining spaces of `genuine Siegel modular forms. We present a number of examples of 1-dimensional spaces of eigenforms where these traces coincide with the Hecke eigenvalues. We hope that the experts on lifting and on endoscopy will be able to prove our conjectures.
For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over QQ associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.
82 - Igor Nikolaev 2021
We recast elliptic surfaces over the projective line in terms of the non-commutative tori with real multiplication. The correspondence is used to study the Picard numbers, the ranks and the minimal models of such surfaces. As an example, we calculate the Picard numbers of elliptic surfaces with complex multiplication.
Given two semistable, non potentially isotrivial elliptic surfaces over a curve $C$ defined over a field of characteristic zero or finitely generated over its prime field, we show that any compatible family of effective isometries of the N{e}ron-Seve ri lattices of the base changed elliptic surfaces for all finite separable maps $Bto C$ arises from an isomorphism of the elliptic surfaces. Without the effectivity hypothesis, we show that the two elliptic surfaces are isomorphic. We also determine the group of universal automorphisms of a semistable elliptic surface. In particular, this includes showing that the Picard-Lefschetz transformations corresponding to an irreducible component of a singular fibre, can be extended as universal isometries. In the process, we get a family of homomorphisms of the affine Weyl group associated to $tilde{A}_{n-1}$ to that of $tilde{A}_{dn-1}$, indexed by natural numbers $d$, which are closed under composition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا