ترغب بنشر مسار تعليمي؟ اضغط هنا

Globular clusters seen by Gaia

188   0   0.0 ( 0 )
 نشر من قبل Elena Pancino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Pancino




اسأل ChatGPT حول البحث

We present a simulation of twelve globular clusters with different concentration, distance, and background population, whose properties are transformed into Gaia observables with the help of the lates Gaia science performances prescriptions. We adopt simplified crowding receipts, based on five years of simulations performed by DPAC (Data Processing and Analysis Consortium) scientists, to explore the effect of crowding and to give a basic idea of what will be made possible by Gaia in the field of Galactic globular clusters observations.



قيم البحث

اقرأ أيضاً

227 - E. Pancino 2017
The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach suffi cient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance, and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majority of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that: (i) the systemic proper motions and parallaxes will be determined to 1% or better up to 15 kpc, and the nearby clusters will have radial velocities to a few km/s ; (ii) internal kinematics will be of unprecendented quality, cluster masses will be determined to 10% up to 15 kpc and beyond, and it will be possible to identify differences of a few km/s or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V<17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3% errors on the absolute photometric calibration.
Line-of-sight kinematic studies indicate that many Galactic globular clusters have a significant degree of internal rotation. However, three-dimensional kinematics from a combination of proper motions and line-of-sight velocities are needed to unveil the role of angular momentum in the formation and evolution of these old stellar systems. Here we present the first quantitative study of internal rotation on the plane-of-the-sky for a large sample of globular clusters using proper motions from Gaia DR2. We detect signatures of rotation in the tangential component of proper motions for 11 out of 51 clusters at a $>$3-sigma confidence level, confirming the detection reported in Gaia collaboration et al. (2018) for 8 clusters, and additionally identify 11 GCs with a 2-sigma rotation detection. For the clusters with a detected global rotation, we construct the two-dimensional rotation maps and proper motion rotation curves, and we assess the relevance of rotation with respect to random motions ($V/sigmasim0.08-0.51$). We find evidence of a correlation between the degree of internal rotation and relaxation time, highlighting the importance of long-term dynamical evolution in shaping the clusters current properties. This is a strong indication that angular momentum must have played a fundamental role in the earliest phases of cluster formation. Finally, exploiting the spatial information of the rotation maps and a comparison with line-of-sight data, we provide an estimate of the inclination of the rotation axis for a subset of 8 clusters. Our work demonstrates the potential of Gaia data for internal kinematic studies of globular clusters and provides the first step to reconstruct their intrinsic three-dimensional structure.
We derived the three-dimensional velocities of individual stars in a sample of 62 Galactic globular clusters using proper motions from the second data release of the Gaia mission together with the most comprehensive set of line-of-sight velocities wi th the aim of investigating the rotation pattern of these stellar systems. We detect the unambiguous signal of rotation in 15 clusters at amplitudes which are well above the level of random and systematic errors. For these clusters, we derived the position and inclination angle of the rotation axis with respect to the line of sight and the overall contribution of rotation to the total kinetic energy budget. The rotation strengths are weakly correlated with the half-mass radius, the relaxation time and anticorrelated with the destruction rate, while no significant alignment of the rotation axes with the orbital poles has been observed. This evidence points toward a primordial origin of the systemic rotation in these stellar systems.
The Gaia-ESO survey is a large public spectroscopic survey aimed at investigating the origin and formation history of our Galaxy by collecting spectroscopy of representative samples (about 10^5 Milky Way stars) of all Galactic stellar populations, in the field and in clusters. The survey uses globular clusters as intra- and inter-survey calibrators, deriving stellar atmospheric parameters and abundances of a significant number of stars in clusters, along with radial velocity determinations. We used precise radial velocities of a large number of stars in seven globular clusters (NGC 1851, NGC 2808, NGC 4372, NGC 4833, NGC 5927, NGC 6752, and NGC 7078) to validate pipeline results and to preliminarily investigate the cluster internal kinematics. Radial velocity measurements were extracted from FLAMES/GIRAFFE spectra processed by the survey pipeline as part of the second internal data release of data products to ESO. We complemented our sample with ESO archival data obtained with different instrument configurations. Reliable radial velocity measurements for 1513 bona fide cluster star members were obtained in total. We measured systemic rotation, estimated central velocity dispersions, and present velocity dispersion profiles of all the selected clusters, providing the first velocity dispersion curve and the first estimate of the central velocity dispersion for the cluster NGC~5927. Finally, we explore the possible link between cluster kinematics and other physical parameters. The analysis we present here demonstrates that Gaia-ESO survey data are sufficiently accurate to be used in studies of kinematics of stellar systems and stellar populations in the Milky Way.
Massive, merging galaxy clusters often host giant, diffuse radio sources that arise from shocks and turbulence; hence, radio observations can be useful for determining the merger state of a cluster. In preparation for a larger study, we selected thre e clusters -- Abell 1319, Abell 1314, and RXC J1501.3+4220 (Z7215) -- making use of the new LOFAR Two-Metre Sky Survey (LoTSS) at 120-168 MHz, and together with archival data, show that these clusters appear to be in pre-merging, merging, and post-merging states, respectively. We argue that Abell 1319 is likely in its pre-merging phase, where three separate cluster components are about to merge. There are no radio halos nor radio relics detected in this system. Abell 1314 is a highly-disturbed, low-mass cluster which is likely in the process of merging. This low-mass system does not show a radio halo, however, we argue that the merger activates mechanisms that cause electron re-acceleration in the large 800 kpc radio tail associated with IC~711. In the cluster Z7215 we discover diffuse radio emission at the cluster center, and we classify this emission as a radio halo, although it is dimmer and smaller than expected by the radio halo power versus cluster mass correlation. We suggest that the disturbed cluster Z7215 is in its post-merging phase. Systematic studies of this kind over a larger sample of clusters observed with LoTSS will help constrain the time scales involved in turbulent re-acceleration and the subsequent energy losses of the underlying electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا