ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonics in Atomically Thin Materials

135   0   0.0 ( 0 )
 نشر من قبل F. Javier Garcia de Abajo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared frequencies, as well as strong interaction with optical quantum emitters. Here, we present a simple analytical description of the optical response of such kinds of structures, which we exploit to investigate their application to light modulation and quantum optics. Specifically, we show that plasmons in one-atom-thick noble-metal layers can be used both to produce complete tunable optical absorption and to reach the strong-coupling regime in the interaction with neighboring quantum emitters. Our methods are applicable to any plasmon-supporting thin materials, and in particular, we provide parameters that allow us to readily calculate the response of silver, gold, and graphene islands. Besides their interest for nanoscale electro-optics, the present study emphasizes the great potential of these structures for the design of quantum nanophotonics devices.



قيم البحث

اقرأ أيضاً

Light-matter interaction at the atomic scale rules fundamental phenomena such as photoemission and lasing, while enabling basic everyday technologies, including photovoltaics and optical communications. In this context, plasmons --the collective elec tron oscillations in conducting materials-- are important because they allow manipulating optical fields at the nanoscale. The advent of graphene and other two-dimensional crystals has pushed plasmons down to genuinely atomic dimensions, displaying appealing properties such as a large electrical tunability. However, plasmons in these materials are either too broad or lying at low frequencies, well below the technologically relevant near-infrared regime. Here we demonstrate sharp near-infrared plasmons in lithographically-patterned wafer-scale atomically-thin silver crystalline films. Our measured optical spectra reveal narrow plasmons (quality factor $sim4$), further supported by a low sheet resistance comparable to bulk metal in few-atomic-layer silver films down to seven Ag(111) monolayers. Good crystal quality and plasmon narrowness are obtained despite the addition of a thin passivating dielectric, which renders our samples resilient to ambient conditions. The observation of spectrally sharp and strongly confined plasmons in atomically thin silver holds great potential for electro-optical modulation and optical sensing applications.
We study the thermal effects on the frictional properties of atomically thin sheets. We simulate a simple model based on the Prandtl-Tomlinson model that reproduces the layer dependence of friction and strengthening effects seen in AFM experiments. W e investigate sliding at constant speed as well as reversing direction. We also investigate contact aging: the changes that occur to the contact when the sliding stops completely. We compare the numerical results to analytical calculations based on Kramers rates. We find that there is a slower than exponential contact aging that weakens the contact and that we expect will be observable in experiments. We discuss the implications for sliding as well as aging experiments.
Recent research in two-dimensional (2D) materials has boosted a renovated interest in the p-n junction, one of the oldest electrical components which can be used in electronics and optoelectronics. 2D materials offer remarkable flexibility to design novel p-n junction device architectures, not possible with conventional bulk semiconductors. In this Review we thoroughly describe the different 2D p-n junction geometries studied so far, focusing on vertical (out-of-plane) and lateral (in-plane) 2D junctions and on mixed-dimensional junctions. We discuss the assembly methods developed to fabricate 2D p-n junctions making a distinction between top-down and bottom-up approaches. We also revise the literature studying the different applications of these atomically thin p-n junctions in electronic and optoelectronic devices. We discuss experiments on 2D p-n junctions used as current rectifiers, photodetectors, solar cells and light emitting devices. The important electronics and optoelectronics parameters of the discussed devices are listed in a table to facilitate their comparison. We conclude the Review with a critical discussion about the future outlook and challenges of this incipient research field.
Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on-the-spot by gate doping, enabling hyperbolic beams reflection, refraction and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.
226 - J.P. Hague 2011
Polaron spectral functions are computed for highly doped graphene-on-substrate and other atomically thin graphitic systems using the diagrammatic Monte Carlo technique. The specific aim is to investigate the effects of interaction on spectral functio ns when the symmetry between sub-lattices of a honeycomb lattice has been broken by the substrate or ionicity, inducing a band gap. Introduction of electron-phonon coupling leads to several polaronic features, such as band-flattening and changes in particle lifetimes. At the K point, differences between energies on each sub-lattice increase with electron-phonon coupling, indicating an augmented transport gap, while the spectral gap decreases slightly. Effects of phonon dispersion and long-range interactions are investigated, and found to lead to only quantitative changes in spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا