ﻻ يوجد ملخص باللغة العربية
Polaron spectral functions are computed for highly doped graphene-on-substrate and other atomically thin graphitic systems using the diagrammatic Monte Carlo technique. The specific aim is to investigate the effects of interaction on spectral functions when the symmetry between sub-lattices of a honeycomb lattice has been broken by the substrate or ionicity, inducing a band gap. Introduction of electron-phonon coupling leads to several polaronic features, such as band-flattening and changes in particle lifetimes. At the K point, differences between energies on each sub-lattice increase with electron-phonon coupling, indicating an augmented transport gap, while the spectral gap decreases slightly. Effects of phonon dispersion and long-range interactions are investigated, and found to lead to only quantitative changes in spectra.
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared
We analyze the effect of twists on the electronic structure of configurations of infinite stacks of graphene layers. We focus on three different cases: an infinite stack where each layer is rotated with respect to the previous one by a fixed angle, t
Two-dimensional dilute magnetic semiconductors can provide fundamental insights in the very nature of magnetic orders and their manipulation through electron and hole doping. Despite the fundamental physics, due to the large charge density control ca
Present work demonstrates the formation of spin-orbital polarons in electron doped copper oxides, that arise due to doping-induced polarisation of the oxygen orbitals in the CuO$_2$ planes. The concept of such polarons is fundamentally different from
We report experimental and theoretical evidence of strong electron-plasmon interaction in n-doped single-layer MoS2. Angle-resolved photoemission spectroscopy (ARPES) measurements reveal the emergence of distinctive signatures of polaronic coupling i