ترغب بنشر مسار تعليمي؟ اضغط هنا

HST hot-Jupiter transmission spectral survey: Haze in the atmosphere of WASP-6b

200   0   0.0 ( 0 )
 نشر من قبل Nikolay Nikolov K
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Nikolov




اسأل ChatGPT حول البحث

We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzers InfraRed Array Camera (IRAC). The resulting spectrum covers the range $0.29-4.5,mu$m. We find evidence for modest stellar activity of WASP-6b and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of $Delta (R_p/R_{ast})=0.0071$ from 0.33 to $4.5,mu$m. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of $973pm144$ K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we find that the complete spectrum can be described by models that include significant opacity from aerosols including Fe-poor Mg$_2$SiO$_4$, MgSiO$_3$, KCl and Na$_2$S dust condensates. WASP-6b is the second planet after HD189733b which has equilibrium temperatures near $sim1200$ K and shows prominent atmospheric scattering in the optical.



قيم البحث

اقرأ أيضاً

We present Hubble Space Telescope optical and near-IR transmission spectra of the transiting hot-Jupiter WASP-31b. The spectrum covers 0.3-1.7 $mu$m at a resolution $Rsim$70, which we combine with Spitzer photometry to cover the full-optical to IR. T he spectrum is dominated by a cloud-deck with a flat transmission spectrum which is apparent at wavelengths $>0.52mu$m. The cloud deck is present at high altitudes and low pressures, as it covers the majority of the expected optical Na line and near-IR H$_2$O features. While Na I absorption is not clearly identified, the resulting spectrum does show a very strong potassium feature detected at the 4.2-$sigma$ confidence level. Broadened alkali wings are not detected, indicating pressures below $sim$10 mbar. The lack of Na and strong K is the first indication of a sub-solar Na/K abundance ratio in a planetary atmosphere (ln[Na/K]$=-3.3pm2.8$), which could potentially be explained by Na condensation on the planets night side, or primordial abundance variations. A strong Rayleigh scattering signature is detected at short wavelengths, with a 4-$sigma$ significant slope. Two distinct aerosol size populations can explain the spectra, with a smaller sub-micron size grain population reaching high altitudes producing a blue Rayleigh scattering signature on top of a larger, lower-lying population responsible for the flat cloud deck at longer wavelengths. We estimate that the atmospheric circulation is sufficiently strong to mix micron size particles upward to the required 1-10 mbar pressures, necessary to explain the cloud deck. These results further confirm the importance of clouds in hot-Jupiters, which can potentially dominate the overall spectra and may alter the abundances of key gaseous species.
We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, t wo with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Armstrong. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9-sigma significance. In this case, the retrieved temperature at the top of the atmosphere (10-5 bar) is 2300 +412-392 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery.
Having a short orbital period and being tidally locked makes WASP-43b an ideal candidate for JWST observations. Phase curve observations of an entire orbit will enable the mapping of the atmospheric structure across the planet, with different wavelen gths of observation allowing different atmospheric depths to be seen. We provide insight into the details of the clouds that may form on WASP-43b in order to prepare the forthcoming interpretation of the JWST and follow-up data. We utilize 3D GCM results as input for a kinetic, non-equilibrium model for mineral cloud particles, and for a kinetic model to study a photochemicaly-driven hydrocarbon haze component. Mineral condensation seeds form throughout the atmosphere of WASP-43b. This is in stark contrast to the ultra-hot Jupiters, like WASP-18b and HAT-P-7b. The dayside is loaded with few but large mineral cloud particles in addition to hydrocarbon haze particles of comparable abundance. Photochemically driven hydrocarbon haze appears on the dayside, but does not contribute to the cloud formation on the nightside. The geometrical cloud extension differs across the globe due to the changing thermodynamic conditions. Day and night differ by 6000km in pressure scale height. As reported for other planets, the C/O is not constant throughout the atmosphere. The mean molecular weight is approximately constant in a H2-dominated WASP-43b. WASP-43b is expected to be fully covered in clouds which are not homogeneously distributed throughout the atmosphere. The dayside and the terminator clouds will be a combination of mineral particles of locally varying size and composition, and of hydrocarbon hazes. The optical depth of hydrocarbon hazes is considerably lower than that of mineral cloud particles such that a wavelength-dependent radius measurement of WASP-43b would be determined by the mineral cloud particles but not by hazes.
516 - N. Nikolov , D. K. Sing , F. Pont 2013
We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on HST observations, covering the spectral regime from 0.29 to 1.027{mu}m with STIS, which is coupled with a recent WFC3 transit (1.087 to 1.687{mu}m). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55{mu}m, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3{sigma} significance level, but find no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~0.85{mu}m. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 +/- 1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simulta- neous stellar activity monitoring of the G0V HAT-P-1b host star and its identical companion show no significant activity that could explain the result. We compare the complete STIS and WFC3 transmission spectrum with theoretical atmospheric mod- els which include haze, sodium and an extra optical absorber. We find that both an optical absorber and a super-solar sodium to water abundance ratio might be a sce- nario explaining the HAT-P-1b observations. Our results suggest that strong optical absorbers may be a dominant atmospheric feature in some hot Jupiter exoplanets.
We have conducted a re-analysis of publicly available Hubble Space Telescope Wide Field Camera 3 (HST WFC3) transmission data for the hot-Jupiter exoplanet WASP-43b, using the Bayesian retrieval package Tau-REx. We report evidence of AlO in transmiss ion to a high level of statistical significance (> 5-sigma in comparison to a flat model, and 3.4-sigma in comparison to a model with H2O only). We find no evidence of the presence of CO, CO2, or CH4 based on the available HST WFC3 data or on Spitzer IRAC data. We demonstrate that AlO is the molecule that fits the data to the highest level of confidence out of all molecules for which high-temperature opacity data currently exists in the infrared region covered by the HST WFC3 instrument, and that the subsequent inclusion of Spitzer IRAC data points in our retrieval further supports the presence of AlO. H2O is the only other molecule we find to be statistically significant in this region. AlO is not expected from the equilibrium chemistry at the temperatures and pressures of the atmospheric layer that is being probed by the observed data. Its presence therefore implies direct evidence of some disequilibrium processes with links to atmospheric dynamics. Implications for future study using instruments such as the James Webb Space Telescope (JWST) are discussed, along with future opacity needs. Comparisons are made with previous studies into WASP-43b.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا