ﻻ يوجد ملخص باللغة العربية
We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on HST observations, covering the spectral regime from 0.29 to 1.027{mu}m with STIS, which is coupled with a recent WFC3 transit (1.087 to 1.687{mu}m). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55{mu}m, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3{sigma} significance level, but find no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~0.85{mu}m. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 +/- 1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simulta- neous stellar activity monitoring of the G0V HAT-P-1b host star and its identical companion show no significant activity that could explain the result. We compare the complete STIS and WFC3 transmission spectrum with theoretical atmospheric mod- els which include haze, sodium and an extra optical absorber. We find that both an optical absorber and a super-solar sodium to water abundance ratio might be a sce- nario explaining the HAT-P-1b observations. Our results suggest that strong optical absorbers may be a dominant atmospheric feature in some hot Jupiter exoplanets.
We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzers InfraRed Array Camera (IRAC). The resulting spectrum cove
We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {mu}m. T
We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the
We present a new ground-based visible transmission spectrum of the high-gravity, hot Jupiter HAT-P-23b, obtained as part of the ACCESS project. We derive the spectrum from five transits observed between 2016 and 2018, with combined wavelength coverag
We present Hubble Space Telescope optical and near-IR transmission spectra of the transiting hot-Jupiter WASP-31b. The spectrum covers 0.3-1.7 $mu$m at a resolution $Rsim$70, which we combine with Spitzer photometry to cover the full-optical to IR. T