ﻻ يوجد ملخص باللغة العربية
Phase space matching between two plasma-accelerator (PA) stages and between a PA and a traditional accelerator component is a critical issue for emittance preservation of beams accelerated by PAs. The drastic differences of the transverse focusing strengths as the beam propagates between different stages and components may lead to a catastrophic emittance growth in the presence of both finite energy spread and lack of proper matching. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to provide exact phase space matching to properly transport the electron beam through two such stages with negligible emittance growth. Theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained.
The generation of very high quality electron bunches (high brightness and low energy spread) from a plasma-based accelerator in the three-dimensional blowout regime using self-injection in tailored plasma density profiles is analyzed theoretically an
Laser plasma acceleration at kilohertz repetition rate has recently been shown to work in two different regimes, with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma de
The FLASHForward experimental facility is a high-performance test-bed for precision plasma-wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionised gas. The plasma is created by ionising gas i
Plasma-based accelerators have made impressive progress in recent years. However, the beam energy spread obtained in these accelerators is still at ~ 1 % level, nearly one order of magnitude larger than what is needed for challenging applications lik
The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially t