ﻻ يوجد ملخص باللغة العربية
Plasma-based accelerators have made impressive progress in recent years. However, the beam energy spread obtained in these accelerators is still at ~ 1 % level, nearly one order of magnitude larger than what is needed for challenging applications like coherent light sources or colliders. In plasma accelerators, the beam energy spread is mainly dominated by its energy chirp (longitudinally correlated energy spread). Here we demonstrate that when an initially chirped electron beam from a linac with a proper current profile is sent through a low-density plasma structure, the self wake of the beam can significantly reduce its energy chirp and the overall energy spread. The resolution-limited energy spectrum measurements show at least a threefold reduction of the beam energy spread from 1.28 % to 0.41 % FWHM with a dechirping strength of ~ 1 (MV/m)/(mm pC). Refined time-resolved phase space measurements, combined with high-fidelity three-dimensional particle-in-cell simulations, further indicate the real energy spread after the dechirper is only about 0.13 % (FWHM), a factor of 10 reduction of the initial energy spread.
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bu
The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially t
Plasma-based electron and positron wakefield acceleration has made great strides in the past decade. However one major challenge for its applications to coherent light sources and colliders is the relatively large energy spread of the accelerated bea
The extreme electromagnetic fields sustained by plasma-based accelerators allow for energy gain rates above 100 GeV/m but are also an inherent source of correlated energy spread. This severely limits the usability of these devices. Here we propose a
A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and