ﻻ يوجد ملخص باللغة العربية
We present a variational approach for relativistic ideal hydrodynamics interacting with electromagnetic fields. The momentum of fluid is introduced as the canonical conjugate variable of the position of a fluid element, which coincides with the conserved quantity derived from the Noether theorem. We further show that our formulation can reproduce the usual electromagnetic hydrodynamics which is obtained so as to satisfy the conservation of the inertia of fluid motion.
The solutions of relativistic viscous hydrodynamics for longitudinal expanding fireballs is investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and Euler conservation equations for the viscous fluid are derived in Rindler
Relativistic hydrodynamics represents a powerful tool to investigate the time evolution of the strongly interacting quark gluon plasma created in ultrarelativistic heavy ion collisions. The equations are solved often numerically, and numerous analyti
The stability and causality of the Landau-Lifshitz theory and the Israel-Stewart type causal dissipative hydrodynamics are discussed. We show that the problem of acausality and instability are correlated in relativistic dissipative hydrodynamics and
The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term,
Based on the Wigner function in local equilibrium, we derive hydrodynamical quantities for a system of polarized spin-1/2 particles: the particle number current density, the energy-momentum tensor, the spin tensor, and the dipole moment tensor. Compa