ﻻ يوجد ملخص باللغة العربية
Relativistic hydrodynamics represents a powerful tool to investigate the time evolution of the strongly interacting quark gluon plasma created in ultrarelativistic heavy ion collisions. The equations are solved often numerically, and numerous analytic solutions also exist. However, the inclusion of viscous effects in exact, analytic solutions has received less attention. Here we utilize Hubble flow to investigate the role of bulk viscosity, and present different classes of exact, analytic solutions valid also in the presence of dissipative effects.
The solutions of relativistic viscous hydrodynamics for longitudinal expanding fireballs is investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and Euler conservation equations for the viscous fluid are derived in Rindler
Hydrodynamics is a general theoretical framework for describing the long-time large-distance behaviors of various macroscopic physical systems, with its equations based on conservation laws such as energy-momentum conservation and charge conservation
The second-order hydrodynamic equations for evolution of shear and bulk viscous pressure have been derived within the framework of covariant kinetic theory based on the effective fugacity quasiparticle model. The temperature-dependent fugacity parame
We propose to model the dissipative hydrodynamics used in description of the multiparticle production processes ($d$-hydrodynamics) by a special kind of the perfect nonextensive fluid ($q$-fluid) where $q$ denotes the nonextensivity parameter appeari
The stability and causality of the Landau-Lifshitz theory and the Israel-Stewart type causal dissipative hydrodynamics are discussed. We show that the problem of acausality and instability are correlated in relativistic dissipative hydrodynamics and