ترغب بنشر مسار تعليمي؟ اضغط هنا

Using polymer electrolyte gates to set-and-freeze threshold voltage and local potential in nanowire-based devices and thermoelectrics

138   0   0.0 ( 0 )
 نشر من قبل Adam Micolich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO$_{4}$ polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap which reduces parasitic effects and enables multiple, independently controllable gates. The methods simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices.
This mini-review is intended as a short introduction to electron flow in nanostructures. Its aim is to provide a brief overview of this topic for people who are interested in the thermodynamics of quantum systems but know little about nanostructures. We particularly emphasize devices that work in the steady-state, such as simple thermoelectrics, but also mention cyclically driven heat engines. We do not aim to be either complete or rigorous, but use a few pages to outline some of the main ideas in the topic.
Recent experiments show that spin thermoelectrics is a promising approach to generate spin voltages. While spin chemical potentials are often limited to a surface layer of the order of the spin diffusion length, we show that thermoelectrically induce d spin chemical potentials can extend much further in itinerant ferromagnets with paramagnetic impurities. In some cases, conservation laws, e.g., for a combination of spin and heat currents, give rise to a linear spin voltage profile. More generally, we find quasilinear profiles involving a spin thermoelectric length scale which far exceeds the spin diffusion length.
The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by ti me-dependently tuning topologically non-trivial parameter regions. In this work, we simulate the exchange of four Majorana modes in T-shaped junctions made out of p-wave superconducting Rashba wires. We derive concrete experimental predictions for (quasi-)adiabatic braiding times and determine geometric conditions for successful Majorana exchange processes. Contrary to the widespread opinion, we show for the first time that in the adiabatic limit the gating time needs to be smaller than the inverse of the squared superconducting order parameter and scales linearly with the gating potential. Further, we show how to circumvent the formation of additional Majorana modes in branched nanowire systems, arising at wire intersection points of narrow junctions. Finally, we propose a multi qubit setup, which allows for universal and in particular topologically protected quantum computing.
The momentum and spin of charge carriers in the topological insulators are constrained to be perpendicular to each other due to the strong spin-orbit coupling. We have investigated this unique spin-momentum locking property in Sb2Te3 topological insu lator nanowires by injecting spin-polarized electrons through magnetic tunnel junction electrodes. Non-local voltage measurements exhibit a symmetry with respect to the magnetic field applied perpendicular to the nanowire channel, which is remarkably different from that of a non-local measurement in a channel that lacks spin-momentum locking. In stark contrast to conventional non-local spin valves, simultaneous reversal of magnetic moments of all magnetic contacts to the Sb2Te3 nanowire alters the non-local voltage. This unusual symmetry is a clear signature of the spin-momentum locking in the Sb2Te3 nanowire surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا