ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Universality of Jordan Centers for Estimating Infection Sources in Tree Networks

109   0   0.0 ( 0 )
 نشر من قبل Wuqiong Luo
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding the infection sources in a network when we only know the network topology and infected nodes, but not the rates of infection, is a challenging combinatorial problem, and it is even more difficult in practice where the underlying infection spreading model is usually unknown a priori. In this paper, we are interested in finding a source estimator that is applicable to various spreading models, including the Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), Susceptible-Infected-Recovered-Infected (SIRI), and Susceptible-Infected-Susceptible (SIS) models. We show that under the SI, SIR and SIRI spreading models and with mild technical assumptions, the Jordan center is the infection source associated with the most likely infection path in a tree network with a single infection source. This conclusion applies for a wide range of spreading parameters, while it holds for regular trees under the SIS model with homogeneous infection and recovery rates. Since the Jordan center does not depend on the infection, recovery and reinfection rates, it can be regarded as a universal source estimator. We also consider the case where there are k>1 infection sources, generalize the Jordan center definition to a k-Jordan center set, and show that this is an optimal infection source set estimator in a tree network for the SI model. Simulation results on various general synthetic networks and real world networks suggest that Jordan center-based estimators consistently outperform the betweenness, closeness, distance, degree, eigenvector, and pagerank centrality based heuristics, even if the network is not a tree.



قيم البحث

اقرأ أيضاً

This paper deals with the statistical signal pro- cessing over graphs for tracking infection diffusion in social networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-Susceptible (SIS) model. Mean field approximatio n is employed to approximate the discrete valued infected degree distribution evolution by a deterministic ordinary differential equation for obtaining a generative model for the infection diffusion. The infected degree distribution is shown to follow polynomial dynamics and is estimated using an exact non- linear Bayesian filter. We compute posterior Cramer-Rao bounds to obtain the fundamental limits of the filter which depend on the structure of the network. Considering the time-varying nature of the real world networks, the relationship between the diffusion thresholds and the degree distribution is investigated using generative models for real world networks. In addition, we validate the efficacy of our method with the diffusion data from a real-world online social system, Twitter. We find that SIS model is a good fit for the information diffusion and the non-linear filter effectively tracks the information diffusion.
Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combinin g the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications.
Topological aspects, like community structure, and temporal activity patterns, like burstiness, have been shown to severly influence the speed of spreading in temporal networks. We study the influence of the topology on the susceptible-infected (SI) spreading on time stamped communication networks, as obtained from a dataset of mobile phone records. We consider city level networks with intra- and inter-city connections. The networks using only intra-city links are usually sparse, where the spreading depends mainly on the average degree. The inter-city links serve as bridges in spreading, speeding up considerably the process. We demonstrate the effect also on model simulations.
A rumor spreading in a social network or a disease propagating in a community can be modeled as an infection spreading in a network. Finding the infection source is a challenging problem, which is made more difficult in many applications where we hav e access only to a limited set of observations. We consider the problem of estimating an infection source for a Susceptible-Infected model, in which not all infected nodes can be observed. When the network is a tree, we show that an estimator for the source node associated with the most likely infection path that yields the limited observations is given by a Jordan center, i.e., a node with minimum distance to the set of observed infected nodes. We also propose approximate source estimators for general networks. Simulation results on various synthetic networks and real world networks suggest that our estimators perform better than distance, closeness, and betweenness centrality based heuristics.
155 - Pei Lv , Quan Zhang , Boya Xu 2021
Corona Virus Disease 2019 (COVID-19), due to its extremely high infectivity, has been spreading rapidly around the world and bringing huge influence to socioeconomic development as well as peoples daily life. Taking for example the virus transmission that may occur after college students return to school, we analyze the quantitative influence of the key factors on the virus spread, including crowd density and self-protection. One Campus Virus Infection and Control Simulation model (CVICS) of the novel coronavirus is proposed in this paper, fully considering the characteristics of repeated contact and strong mobility of crowd in the closed environment. Specifically, we build an agent-based infection model, introduce the mean field theory to calculate the probability of virus transmission, and micro-simulate the daily prevalence of infection among individuals. The experimental results show that the proposed model in this paper efficiently simulate how the virus spread in the dense crowd in frequent contact under closed environment. Furthermore, preventive and control measures such as self-protection, crowd decentralization and isolation during the epidemic can effectively delay the arrival of infection peak and reduce the prevalence, and finally lower the risk of COVID-19 transmission after the students return to school.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا