ﻻ يوجد ملخص باللغة العربية
A rumor spreading in a social network or a disease propagating in a community can be modeled as an infection spreading in a network. Finding the infection source is a challenging problem, which is made more difficult in many applications where we have access only to a limited set of observations. We consider the problem of estimating an infection source for a Susceptible-Infected model, in which not all infected nodes can be observed. When the network is a tree, we show that an estimator for the source node associated with the most likely infection path that yields the limited observations is given by a Jordan center, i.e., a node with minimum distance to the set of observed infected nodes. We also propose approximate source estimators for general networks. Simulation results on various synthetic networks and real world networks suggest that our estimators perform better than distance, closeness, and betweenness centrality based heuristics.
We consider the problem of identifying an infection source based only on an observed set of infected nodes in a network, assuming that the infection process follows a Susceptible-Infected-Susceptible (SIS) model. We derive an estimator based on estim
This paper investigates the problem of utilizing network topology and partial timestamps to detect the information source in a network. The problem incurs prohibitive cost under canonical maximum likelihood estimation (MLE) of the source due to the e
Corona Virus Disease 2019 (COVID-19), due to its extremely high infectivity, has been spreading rapidly around the world and bringing huge influence to socioeconomic development as well as peoples daily life. Taking for example the virus transmission
This paper deals with the statistical signal pro- cessing over graphs for tracking infection diffusion in social networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-Susceptible (SIS) model. Mean field approximatio
Finding the infection sources in a network when we only know the network topology and infected nodes, but not the rates of infection, is a challenging combinatorial problem, and it is even more difficult in practice where the underlying infection spr