ﻻ يوجد ملخص باللغة العربية
Proton transfer across single layer graphene is associated with large computed energy barriers and is therefore thought to be unfavorable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here, we subject single layer graphene supported on fused silica to cycles of high and low pH and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid-base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energy barriers of 0.68 to 0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. Unfavorable energy barriers to helium and hydrogen transfer indicate the transfer process is selective for aqueous protons.
Graphene is a 2D material that displays excellent electronic transport properties with prospective applications in many fields. Inducing and controlling magnetism in the graphene layer, for instance by proximity of magnetic materials, may enable its
We demonstrate anisotropic etching of single-layer graphene by thermally-activated nickel nanoparticles. Using this technique, we obtain sub-10nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic directi
Single-layer superconductors are ideal materials for fabricating superconducting nano devices. However, up to date, very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet. Here,
Graphene has shown great application opportunities in future nanoelectronic devices due to its outstanding electronic properties. Moreover, its impressive optical properties have been attracting the interest of researchers, and, recently, the photovo
We carried out micro-Raman spectroscopy of graphene layers over the temperature range from approximately 80 K to 370 K. The number of layers was independently confirmed by the quantum Hall measurements and atomic force microscopy. The measured values