ﻻ يوجد ملخص باللغة العربية
We perform the discrete-to-continuum limit passage for a microscopic model describing the time evolution of dislocations in a one dimensional setting. This answers the related open question raised by Geers et al. in [GPPS13]. The proof of the upscaling procedure (i.e. the discrete-to-continuum passage) relies on the gradient flow structure of both the discrete and continuous energies of dislocations set in a suitable evolutionary variational inequality framework. Moreover, the convexity and $Gamma$-convergence of the respective energies are properties of paramount importance for our arguments.
The moduli space of centred Bogomolny-Prasad-Sommmerfield 2-monopole fields is a 4-dimensional manifold M with a natural metric, and the geodesics on M correspond to slow-motion monopole dynamics. The best-known case is that of monopoles on R^3, wher
We exploit a two-dimensional model [7], [6] and [1] describing the elastic behavior of the wall of a flexible blood vessel which takes interaction with surrounding muscle tissue and the 3D fluid flow into account. We study time periodic flows in a cy
We show that spectral walls are common phenomena in the dynamics of kinks in (1+1) dimensions. They occur in models based on two or more scalar fields with a nonempty Bogomolnyi-Prasam-Sommerfield (BPS) sector, hosting two zero modes, where they are
This paper focuses on the connections between four stochastic and deterministic models for the motion of straight screw dislocations. Starting from a description of screw dislocation motion as interacting random walks on a lattice, we prove explicit
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arb