ﻻ يوجد ملخص باللغة العربية
The response of thin films of Bi$_2$Se$_3$ to a strong perpendicular magnetic field is investigated by performing magnetic bandstructure calculations for a realistic multi-band tight-binding model. Several crucial features of Landau quantization in a realistic three-dimensional topological insulator are revealed. The $n=0$ Landau level is absent in ultra-thin films, in agreement with experiment. In films with a crossover thickness of five quintuple layers, there is a signature of the $n=0$ level, whose overall trend as a function of magnetic field matches the established low-energy effective-model result. Importantly, we find a field-dependent splitting and a strong spin-polarization of the $n=0$ level which can be measured experimentally at reasonable field strengths. Our calculations show mixing between the surface and bulk Landau levels which causes the character of levels to evolve with magnetic field.
We report on a study of an ultrathin topological insulator film with hybridization between the top and bottom surfaces, placed in a quantizing perpendicular magnetic field. We calculate the full Landau level spectrum of the film as a function of the
As a model for describing finite-size effects in topological insulator thin films, we study a one-dimensional (1D) effective model of a topological insulator (TI). Using this effective 1D model, we reveal the precise correspondence between the spatia
We report that the finite thickness of three-dimensional topological insulator (TI) thin films produces an observable magnetoresistance (MR) in phase coherent transport in parallel magnetic fields. The MR data of Bi2Se3 and (Bi,Sb)2Te3 thin films are
We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Ham
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated