ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal Proper-Motions in the Eskimo Nebula

144   0   0.0 ( 0 )
 نشر من قبل Ma. Teresa Garc\\'ia-D\\'iaz Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of internal proper motions at more than five hundred positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 years. Comparison of the two observations shows clearly the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, and in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, as the more reliable. We go on to perform a criss-cross mapping analysis on the proper motion vectors which helps in the interpretation of the velocity pattern. Combining our results on the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula as 1300 pc.



قيم البحث

اقرأ أيضاً

103 - L. R. Bedin 2003
We have undertaken a long term program to measure high precision proper motions of nearby Galactic globular cluster (GC) stars using multi-epoch observations with the WFPC2 and the ACS cameras on-board the Hubble Space Telescope. The proper motions a re used to study the internal cluster kinematics, and to obtain accurate cluster distances. In this paper, we also show how the proper motions of the field stars projected in the direction of the studied clusters can be used to set constraints on the Galaxy kinematics.
We describe a new method for determining proper motions of extended objects, and a pipeline developed for the application of this method. We then apply this method to an analysis of four epochs of [S~II] HST images of the HH~1 jet (covering a period of $sim 20$~yr). We determine the proper motions of the knots along the jet, and make a reconstruction of the past ejection velocity time-variability (assuming ballistic knot motions). This reconstruction shows an acceleration of the ejection velocities of the jet knots, with higher velocities at more recent times. This acceleration will result in an eventual merging of the knots in $sim 450$~yr and at a distance of $sim 80$ from the outflow source, close to the present-day position of HH~1.
In this paper we present the results of very long baseline interferometry (VLBI) ob- servations carried out with the VLBI Exploration of Radio Astrometry (VERA) array and the Very Long Baseline Array (VLBA) toward H2O masers in a young planetary nebu la K 3-35. From the VERA observations we measured the annual parallax and proper mo- tion of a bright water maser spot in K 3-35. The resulting distance is D = 3.9+0.7 kpc. -0.5 This is the first time that the parallax of a planetary nebula is obtained by observations of its maser emission. On the other hand, the proper motion of K 3-35 as a whole was esti- mated to be {mu}{alpha} = -3.34+/-0.10 mas yr-1, {mu}{delta} = -5.93+/-0.07 mas yr-1. From these results we determined the position and velocity of K 3-35 in Galactic cylindrical coordinates: (R,{theta},z) = (7.11+0.08-0.06 kpc, 27+/-5{circ}, 140+25-18 pc) and (VR, V{theta}, Vz) = (33+/-16, 233+/-11, 11+/-2) km s-1, respectively. Additionally, from our VLBA observations we measured the relative proper motions among the water maser spots located in the central region of the nebula, which have been proposed to be tracing a toroidal structure. The distribution and relative proper motions of the masers, compared with previous reported observed epochs, suggest that such structure could be totally destroyed within a few years, due to the action of high velocity winds and the expansion of the ionization front in the nebula.
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In the case of non-symmetric nebulae, and bipolar nebulae in particular, it can also provide information on the development of the morphology. We have measured the expansion proper motions in NGC 6302 from two epochs of HST imaging, separated by 9.43 years. This is used to determine the expansion age and the structure of the velocity field. We use HST images in the [N II] 6583{AA} filter from HST WF/PC2 and WFC3. The proper motions were obtained for a set of 200 individual tiles within 90 of the central star. The velocity field shows a characteristic linear increase of velocity with radial distance (a so-called Hubble flow). It agrees well with a previous determination by Meaburn et al. (2008), made in a lobe further from the star, which was based on a much longer time span. The pattern of proper motion vectors is mostly radial and the origin is close to the position of the central star directly detected by Szyszka et al. (2009). The results show that the lobes of NGC 6302 were ejected during a brief event 2250 pm 35yr ago. In the inner regions there is evidence for a subsequent acceleration of the gas by an additional 9.2 km/s, possibly related to the onset of ionization. The dense and massive molecular torus was ejected over 5000yr, ending about 2900yr ago. The lobes were ejected after a short interlude (the jet lag) of sim 600 yr during a brief event. The torus and lobes orig- inate from separate mass-loss events with different physical processes. The delay between the cessation of equatorial mass loss and the ejection of the lobes provides an important constraint for explaining the final mass-loss stages of the progenitor stellar system.
The Vista Variables in the Via Lactea survey (VVV) is a near-IR ESO public survey devoted to study the Galactic bulge and southern inner disk covering 560 deg$^2$ on the sky. This multi-epoch and multi-wavelength survey has helped to discover the fir st brown dwarfs towards the Galactic center, one of the most crowded areas in the sky, and several low mass companions to known nearby stars. The multi-epoch information has allowed us to calculate precise parallaxes, and put some constraints on the long-term variability of these objects. We expect to discover above a hundred more brown dwarfs. The VVV survey makes a great synergy with the Gaia mission, as both will observe for a few years the same fields at different wavelengths, and as VVV is more sensitive to very red objects such as brown dwarfs, VVV might provide unique candidates to follow up eventual astrometric microlensing events thank to the exquisite astrometric precision of the Gaia mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا