ﻻ يوجد ملخص باللغة العربية
In this paper we present the results of very long baseline interferometry (VLBI) ob- servations carried out with the VLBI Exploration of Radio Astrometry (VERA) array and the Very Long Baseline Array (VLBA) toward H2O masers in a young planetary nebula K 3-35. From the VERA observations we measured the annual parallax and proper mo- tion of a bright water maser spot in K 3-35. The resulting distance is D = 3.9+0.7 kpc. -0.5 This is the first time that the parallax of a planetary nebula is obtained by observations of its maser emission. On the other hand, the proper motion of K 3-35 as a whole was esti- mated to be {mu}{alpha} = -3.34+/-0.10 mas yr-1, {mu}{delta} = -5.93+/-0.07 mas yr-1. From these results we determined the position and velocity of K 3-35 in Galactic cylindrical coordinates: (R,{theta},z) = (7.11+0.08-0.06 kpc, 27+/-5{circ}, 140+25-18 pc) and (VR, V{theta}, Vz) = (33+/-16, 233+/-11, 11+/-2) km s-1, respectively. Additionally, from our VLBA observations we measured the relative proper motions among the water maser spots located in the central region of the nebula, which have been proposed to be tracing a toroidal structure. The distribution and relative proper motions of the masers, compared with previous reported observed epochs, suggest that such structure could be totally destroyed within a few years, due to the action of high velocity winds and the expansion of the ionization front in the nebula.
K 3-35 is a planetary nebula (PN) where H2O maser emission has been detected, suggesting that it departed from the proto-PNe phase only some decades ago. Interferometric VLA observations of the OH 18 cm transitions in K~3-35 are presented.OH maser em
We report the detection, for the first time, of HCO+ (J=1-0) emission as well as marginal CO (J=1-0) emission toward the planetary nebula (PN) K3-35 as a result of a molecular survey carried out toward this source. We also report new observations of
We present measurements of internal proper motions at more than five hundred positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 years. Comparison of the t
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In
H2O (22 GHz) and SiO masers (43, 86, 129 GHz) in the bipolar proto-planetary nebula OH231.8+4.2 were simultaneously monitored using the 21-m antennas of the Korean VLBI Network in 2009-2015. Both species exhibit periodic flux variations that correlat