ﻻ يوجد ملخص باللغة العربية
We discuss properties of the ultra-luminous $X$-ray source in the galaxy M82, NuSTAR J095551+6940.8, containing an accreting neutron star. The neutron star has surface magnetic field $ B_{NS} approx 1.4 times 10^{13 } , {rm G}$ and experiences accretion rate of $9 times 10^{-7} M_odot {rm , yr}^{-1} $. The magnetospheric radius, close to the corotation radius, is $sim 2 times 10^8$ cm. The accretion torque on the neutron star is reduce well below what is expected in a simple magnetospheric accretion due to effective penetration of the stellar magnetic field into the disk beyond the corotation radius. As a result, the radiative force of the surface emission does not lead to strong coronal wind, but pushes plasma along magnetic field lines towards the equatorial disk. The neutron star is nearly an orthogonal rotator, with the angle between the rotation axis and the magnetic moment $geq 80$ degrees. Accretion occurs through optically thick -- geometrically thin and flat accretion curtain, which cuts across the polar cap. High radiation pressure from the neutron star surface is nevertheless smaller than that the ram pressure of the accreting material flowing through the curtain, and thus fails to stop the accretion. At distances below few stellar radii the magnetic suppression of the scattering cross-section becomes important. The $X$-ray luminosity (pulsed and persistent components) comes both from the neutron star surface as a hard $X$-ray component and as a soft component from reprocessing by the accretion disk.
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodyna
Gravitational microlensing by the stellar population of lensing galaxies provides an important opportunity to spatially resolve the accretion disk structure in strongly lensed quasars. Some of the objects (like Einsteins cross) are reasonably consist
We use global three dimensional radiation magneto-hydrodynamical simulations to study accretion disks onto a $5times 10^8M_{odot}$ black hole with accretion rates varying from $sim 250L_{Edd}/c^2$ to $1500 L_{Edd}/c^2$. We form the disks with torus c
We present a detailed, broadband X-ray spectral analysis of the ULX pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the $XMM$-$Newton$, $NuSTAR$ and $Chandra$ observatories. The broadband $XMM$-$Newton+NuSTAR$ spectrum of P13
Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_Xsim 10^{36}$ erg s$^{-1}$). These pulsations show that