ﻻ يوجد ملخص باللغة العربية
Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band to band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs. InP NW) and less strongly on crystal structure (ZB vs. WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NW reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures which lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.
In this study, we present a complete experimental and theoretical investigation of the fundamental exciton Zeeman splitting in wurtzite InP nanowires. We determined the exciton gyromagnetic factor, $g_{exc}$, by magneto-photoluminescence spectroscopy
We have performed a detailed study of the lattice distortions of InP wurtzite nanowires containing an axial screw dislocation. Eshelby predicted that this kind of system should show a crystal rotation due to the dislocation induced torque. We have me
We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires with nominally identical diameter. We compare the transfer characteristics and field-effect mobility ver
We analyze the process of thermalization, dynamics and the eigenstate thermalization hypothesis (ETH) for the single impurity Anderson model, focusing on the Kondo regime. For this we construct the complete eigenbasis of the Hamiltonian using the num
The authors combine acousto-optoelectric and multi-channel photon correlation spectroscopy to probe spatio-temporal carrier dynamics induced by a piezoelectric surface acoustic wave (SAW). The technique is implemented by combining phase-locked optica