ﻻ يوجد ملخص باللغة العربية
We present a new analysis of $alpha_s$ from hadronic $tau$ decays based on the recently revised ALEPH data. The analysis is based on a strategy which we previously applied to the OPAL data. We critically compare our strategy to the one traditionally used and comment on the main differences. Our analysis yields the values $alpha_s(m_tau^2)=0.296pm 0.010$ using fixed-order perturbation theory, and $alpha_s(m_tau^2)=0.310pm 0.014$ using contour-improved perturbation theory. Averaging these values with our previously obtained values from the OPAL data, we find $alpha_s(m_tau^2)=0.303pm 0.009$, respectively, $alpha_s(m_tau^2)=0.319pm 0.012$, as the most reliable results for $alpha_s$ from $tau$ decays currently available.
We summarize a comparison of the two strategies which are currently available in the literature for determining the value of $alpha_s(m_tau)$. We will refer to these as the truncated Operator Product Expansion model and the Duality Violation model. A
We discuss sum-rule determinations of $alpha_s$ from non-strange hadronic $tau$-decay data. We investigate, in particular, the reliability of the assumptions underlying the truncated OPE strategy, which specifies a certain treatment of non-perturbati
Hadronic $tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $tau$ decays can be related to QCD quark-level calculations to determine fundamental quant
A recent analysis of data on the two photon production of the $eta_c$ and its decay to $K(Kpi)$ has determined the $Kpi$ $S$-wave amplitude in a model-independent way assuming primarily that the additional kaon is a spectator in this decay. The purpo
An update of the ALEPH non-strange spectral functions from hadronic $tau$ decays is presented. Compared to the 2005 ALEPH publication, the main improvement is related to the use of a new method to unfold the measured mass spectra from detector effect