ﻻ يوجد ملخص باللغة العربية
An update of the ALEPH non-strange spectral functions from hadronic $tau$ decays is presented. Compared to the 2005 ALEPH publication, the main improvement is related to the use of a new method to unfold the measured mass spectra from detector effects. This procedure also corrects a previous problem in the correlations between the unfolded mass bins. Results from QCD studies and for the evaluation of the hadronic vacuum polarisation contribution to the anomalous muon magnetic moment are derived using the new spectral functions. They are found in agreement with published results based on the previous set of spectral functions.
Hadronic $tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $tau$ decays can be related to QCD quark-level calculations to determine fundamental quant
The vector and axial-vector ALEPH hadronic spectral functions from $tau$-decay are used to probe potential quark-hadron duality violations (DV). This is done in the framework of finite energy QCD sum rules (FESR). A pinched integration kernel is intr
We present a new analysis of $alpha_s$ from hadronic $tau$ decays based on the recently revised ALEPH data. The analysis is based on a strategy which we previously applied to the OPAL data. We critically compare our strategy to the one traditionally
The evolution of the determination of the strong coupling constant $alpha_s$ from the leptonic branching ratios, the lifetime, and the invariant mass distributions of the hadronic final state of the $tau$ lepton over the last two decades is briefly r
We extract the spectral functions in the scalar, pseudo-scalar, vector, and axial vector channels above the deconfinement phase transition temperature (Tc) using the maximum entropy method (MEM). We use anisotropic lattices, 32^3 * 32, 40, 54, 72, 80