ﻻ يوجد ملخص باللغة العربية
We have developed a nanomechanical resonator, for which the motional degree of freedom is a superfluid 4He oscillating flow confined to precisely defined nanofluidic channels. It is composed of an in-cavity capacitor measuring the dielectric constant, which is coupled to a superfluid Helmholtz resonance within nanoscale channels, and it enables sensitive detection of nanofluidic quantum flow. We present a model to interpret the dynamics of our superfluid nanomechanical resonator, and we show how it can be used for probing confined geometry effects on thermodynamic functions. We report isobaric measurements of the superfluid fraction in liquid 4He at various pressures, and the onset of quantum turbulence in restricted geometry.
We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Foc
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak co
Nanoscale mechanical resonators are widely utilized to provide high sensitivity force detectors. Here we demonstrate that such high quality factor resonators immersed in superfluid (^4mathrm{He}) can be excited by a modulated flux of phonons. A nanos
We propose an approach for achieving ground-state cooling of a nanomechanical resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD is an electronic analog of a three-level atom in $Lambda$ configuration which allows an electr
We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch b