ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Time Variation of the Intensity of Molecular Lines in IRC+10216 in The Submillimeter and Far Infrared Domains

133   0   0.0 ( 0 )
 نشر من قبل Pepe Cernicharo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species towards the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the HIFI instrument on board textit{Herschel}thanks{textit{Herschel} is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA} and with the IRAMthanks{This work was based on observations carried out with the IRAM 30-meter telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain)} 30-m telescope. They cover several observing periods spreading over 3 years. The line intensity variations for molecules produced in the external layers of the envelope most probably result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations have to take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The sub-mm and FIR lines of AGB stars cannot anymore be considered as safe intensity calibrators.



قيم البحث

اقرأ أيضاً

A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
118 - Nimesh A. Patel 2008
A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansio n velocities of ~4 km/s, less than 3 times the well-known value of the terminal expansion velocity (14.5 km/s) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v=1, J=17--16 and J=19--18 lines of Si34S and 29SiS and the v=2, J=7--6 line of CS. Maps of these lines show that the emission is confined to a region within ~60 AU of the star, indicating that the narrow-line emission is probing the region of dust-formation where the stellar wind is still being accelerated.
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of I RC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Teles cope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
We present new high angular resolution interferometer observations of the v=0 J=14-13 and 15-14 SiS lines towards IRC+10216, carried out with CARMA and ALMA. The maps, with angular resolutions of ~0.25and 0.55, reveal (1) an extended, roughly uniform , and weak emission with a size of ~0.5, (2) a component elongated approximately along the East-West direction peaking at ~0.13 and 0.17 at both sides of the central star, and (3) two blue- and red-shifted compact components peaking around 0.07 to the NW of the star. We have modeled the emission with a 3D radiation transfer code finding that the observations cannot be explained only by thermal emission. Several maser clumps and one arc-shaped maser feature arranged from 5 to 20R* from the central star, in addition to a thin shell-like maser structure at ~13R* are required to explain the observations. This maser emitting set of structures accounts for 75% of the total emission while the other 25% is produced by thermally excited molecules. About 60% of the maser emission comes from the extended emission and the rest from the set of clumps and the arc. The analysis of a time monitoring of these and other SiS and 29SiS lines carried out with the IRAM 30m telescope from 2015 to present suggests that the intensity of some spectral components of the maser emission strongly depends on the stellar pulsation while other components show a mild variability. This monitoring evidences a significant phase lag of ~0.2 between the maser and NIR light-curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا