ﻻ يوجد ملخص باللغة العربية
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Telescope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon c
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular
Aims. We model the chemistry of the inner wind of the carbon star IRC+10216 and consider the effect of periodic shocks induced by the stellar pulsation on the gas to follow the non-equilibrium chemistry in the shocked gas layers. We consider a very c
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of I
The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has been tentatively identified with a T_MB = 40 mK spectral line observed with the IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer model has been used t