ترغب بنشر مسار تعليمي؟ اضغط هنا

High energy photoelectron emission from gases using plasmonics enhanced near-fields

625   0   0.0 ( 0 )
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically the photoelectron emission in noble gases using plasmonic enhanced near-fields. We demonstrate that these fields have a great potential to generate high energy electrons by direct mid-infrared laser pulses of the current femtosecond oscillator. Typically, these fields appear in the surroundings of plasmonic nanostructures, having different geometrical shape such as bow-ties, metallic waveguides, metal nanoparticles and nanotips, when illuminated by a short laser pulse. In here, we consider metal nanospheres, in which the spatial decay of the near-field of the isolated nanoparticle can be approximated by an exponential function according to recent attosecond streaking measurements. We establish that the strong nonhomogeneous character of the enhanced near-field plays an important role in the above threshold ionization (ATI) process and leads to a significant extension in the photoelectron spectra. In this work, we employ the time dependent Schrodinger equation in reduced dimensions to calculate the photoelectron emission of xenon atoms in such enhanced near-field. Our findings are supported by classical calculations.



قيم البحث

اقرأ أيضاً

High-harmonic generation in two-colour ($omega-2omega$) counter-rotating circularly polarised laser fields opens the path to generate isolated attosecond pulses and attosecond pulse trains with controlled ellipticity. The generated harmonics have alt ernating helicity, and the ellipticity of the generated attosecond pulse depends sensitively on the relative intensities of two adjacent, counter-rotating harmonic lines. For the $s$-type ground state, such as in Helium, the successive harmonics have nearly equal amplitude, yielding isolated attosecond pulses and attosecond pulse trains with linear polarisation, rotated by 120$^{{circ}}$ from pulse to pulse. In this work, we suggest a solution to overcome the limitation associated with the $s$-type ground state. It is based on modifying the three propensity rules associated with the three steps of the harmonic generation process: ionisation, propagation, and recombination. We control the first step by seeding high harmonic generation with XUV light tuned well below the ionisation threshold, which generates virtual excitations with the angular momentum co-rotating with the $omega$-field. We control the propagation step by increasing the intensity of the $omega$-field relative to the $2omega$-field, further enhancing the chance of the $omega$-field being absorbed versus the $2omega$-field, thus favouring the emission co-rotating with the seed and the $omega-$field. We demonstrate our proposed control scheme using Helium atom as a target and solving time-dependent Schr{o}dinger equation in two and three-dimensions.
Waveguide-integrated plasmonics is a growing field with many innovative concepts and demonstrated devices in the visible and near-infrared. Here, we extend this body of work to the mid-infrared for the application of surface-enhanced infrared absorpt ion (SEIRA), a spectroscopic method to probe molecular vibrations in small volumes and thin films. Built atop a silicon-on-insulator (SOI) waveguide platform, two key plasmonic structures useful for SEIRA are examined using computational modeling: gold nanorods and coaxial nanoapertures. We find resonance dips of 80% in near diffraction-limited areas due to arrays of our structures and up to 40% from a single resonator. Each of the structures are evaluated using the simulated SEIRA signal from poly(methyl methacrylate) and an octadecanethiol self-assembled monolayer. The platforms we present allow for a compact, on-chip SEIRA sensing system with highly efficient waveguide coupling in the mid-IR.
Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconducto r physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface.
Strong field-confinement, long-lifetime resonances, and slow-light effects suggest that meta surfaces are a promising tool for nonlinear optical applications. These nanostructured devices have been utilized for relatively high efficiency solid-state high-harmonic generation platforms, four-wave mixing, and Raman scattering experiments, among others. Here we report the first all-dielectric metasurface to enhance harmonic generation from a surrounding gas, achieving as much as a factor of 45 increase in the overall yield for Argon atoms. When compared to metal nanostructures, dielectrics are more robust against damage for high power applications such as those using atomic gases. We employ dimerized high-contrast gratings fabricated in silicon-on-insulator that support bound states in the continuum, a resonance feature accessible in broken-symmetry planar devices. Our 1D gratings maintain large mode volumes, overcoming one of the more severe limitations of earlier device designs and greatly contributing to enhanced third- and fifth- harmonic generation. The interaction lengths that can be achieved are also significantly greater than the 10s of nm to which earlier solid-state designs were restricted. We perform finite-difference time-domain simulations to fully characterize the wavelength, linewidth, mode profile, and polarization dependence of the resonances. Our experiments confirm these predictions and are consistent with other nonlinear optical properties. The tunable wavelength dependence and quality-factor control we demonstrate in these devices make them an attractive tool for the next generation of high-harmonic sources, which are anticipated to be pumped at longer wavelengths and with lower peak power, higher repetition rate lasers.
We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا