ﻻ يوجد ملخص باللغة العربية
Raman scattering (RS) spectra and current-voltage characteristics at room temperature were measured in six series of small samples fabricated by means of electron-beam lithography on the surface of a large size (5x5 mm) industrial monolayer graphene film. Samples were irradiated by different doses of C${}^+$ ion beam up to $10^{15}$ cm${}^{-2}$. It was observed that at the utmost degree of disorder, the Raman spectra lines disappear which is accompanied by the exponential increase of resistance and change in the current-voltage characteristics.These effects are explained by suggestion that highly disordered graphene film ceases to be a continuous and splits into separate fragments. The relationship between structure (intensity of RS lines) and sample resistance is defined. It is shown that the maximal resistance of the continuous film is of order of reciprocal value of the minimal graphene conductivity $pi h/4e^2approx 20$ kOhm.
We report multiphonon Raman scattering in graphene samples. Higher order combination modes involving 3 phonons and 4 phonons are observed in single-layer (SLG), bi-layer (BLG), and few layer (FLG) graphene samples prepared by mechanical exfoliation.
The Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C$^{+}$ and Xe$^{+}$ ions were measured after annealing in high vacuum, and in forming gas (95%Ar+5%H$_{2}$). It was found that these metho
We have observed the quantum Hall effect (QHE) and Shubnikov-de Haas (SdH) oscillations in highly disordered graphene at magnetic fields up to 65 T. Disorder was introduced by hydrogenation of graphene up to a ratio H/C $approx 0.1%$. The analysis of
We report measurements of disordered graphene probed by both a high electric field and a high magnetic field. By apply a high source-drain voltage Vsd, we are able to study the current-voltage relation I-Vsd of our device. With increasing Vsd, a cros
Magneto-Raman scattering experiments from the surface of graphite reveal novel features associated to purely electronic excitations which are observed in addition to phonon-mediated resonances. Graphene-like and graphite domains are identified throug