ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-Raman scattering of graphene on graphite: Electronic and phonon excitations

114   0   0.0 ( 0 )
 نشر من قبل Cl\\'ement Faugeras
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-Raman scattering experiments from the surface of graphite reveal novel features associated to purely electronic excitations which are observed in addition to phonon-mediated resonances. Graphene-like and graphite domains are identified through experiments with $sim 1mu m$ spatial resolution performed in magnetic fields up to 32T. Polarization resolved measurements emphasize the characteristic selection rules for electronic transitions in graphene. Graphene on graphite displays the unexpected hybridization between optical phonon and symmetric across the Dirac point inter Landau level transitions. The results open new experimental possibilities - to use light scattering methods in studies of graphene under quantum Hall effect conditions.



قيم البحث

اقرأ أيضاً

The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-di mensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
The results of micro-Raman scattering measurements performed on three different ``graphitic materials: micro-structured disks of highly oriented pyrolytic graphite, graphene multi-layers thermally decomposed from carbon terminated surface of 4H-SiC a nd an exfoliated graphene monolayer are presented. Despite its multi-layer character, most parts of the surface of the graphitized SiC substrates shows a single-component, Lorentzian shape, double resonance Raman feature in striking similarity to the case of a single graphene monolayer. Our observation suggests a very weak electronic coupling between graphitic layers on the SiC surface, which therefore can be considered to be graphene multi-layers with a simple (Dirac-like) band structure.
327 - Elisa Riccardi 2018
We report a symmetry resolved electronic Raman scattering (ERS) study of a bilayer graphene device under gate voltage. We show that the ERS continuum is dominated by interband chiral excitations of $A_{2}$ symmetry and displays a characteristic Pauli -blocking behavior similar to the monolayer case. Crucially, we show that non-chiral excitations make a vanishing contribution to the Raman cross-section due to destructive interference effects in the Raman amplitude matrix elements. This is in a marked contrast to optical absorption measurements and opens interesting venues for the use of Raman scattering as a selective probe of chiral degrees of freedom in topological matter and other 2D crystals.
We present a magneto-Raman study on high-quality single-layer graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride by a dry transfer technique. By analyzing the Raman D, G, and 2D peaks, we find that the structural quality of the samples is comparable to state-of-the-art exfoliated graphene flakes. From B field dependent Raman measurements, we extract the broadening and associated lifetime of the G peak due to anharmonic effects. Furthermore, we determine the decay width and lifetime of Landau level (LL) transitions from magneto-phonon resonances as a function of laser power. At low laser power, we find a minimal decay width of 140 1/cm highlighting the high electronic quality of the CVD-grown graphene. At higher laser power, we observe an increase of the LL decay width leading to a saturation with the corresponding lifetime saturating at a minimal value of 18 fs.
We study electronic contribution to the Raman scattering signals of two-, three- and four-layer graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in moir{e} minibands of twistronic graphene, one related to direct hybridization of Dirac states, and the other resulting from band folding caused by moir{e} superlattice. The positions of both peaks strongly depend on the twist angle, so that their detection can be used for non-invasive characterization of the twist, even in hBN-encapsulated structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا