ترغب بنشر مسار تعليمي؟ اضغط هنا

Resistive switching phenomena in TiOx nanoparticle layers for memory applications

196   0   0.0 ( 0 )
 نشر من قبل Pablo Stoliar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical characteristics of a Co/TiO_x/Co resistive memory device, fabricated by two different methods are reported. In addition to crystalline TiO_2 layers fabricated via conventional atomic layer deposition (ALD), an alternative method has been examined, where TiO_x nanoparticle layers were fabricated via sol-gel. The different devices have shown different hysteresis loops with a unique crossing point for the sol-gel devices. A simple qualitative model is introduced to describe the different current-voltage behaviours by suggesting only one active metal-oxide interface for the ALD devices and two active metal-oxide interfaces for the sol-gel devices. Furthermore, we show that the resistive switching behaviour could be easily tuned by proper interface engineering and that despite having a similar active material, different fabrication methods can lead to dissimilar resistive switching properties.



قيم البحث

اقرأ أيضاً

We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO3 (LHO) thin films for non-volatile resistive random access memory (RRAM) applications. Nonpolar resistive switching (RS) was achieved in PtLHOPt memory cells with all four possible RS modes ( positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high RON and ROFF ratios (in the range of 104 to 105) and non-overlapping switching voltages (set voltage, VON 3.6 to 4.2 V and reset voltage, VOFF 1.3 to 1.6 V) with a small variation of about 5 to 8 percent. X ray photoelectron spectroscopic studies together with temperature dependent switching characteristics revealed the formation of metallic holmium (Ho) and oxygen vacancies (VO) constituted conductive nanofilaments (CNFs) in the low resistance state (LRS). Detailed analysis of current versus voltage characteristics further corroborated the formation of CNFs based on metal like (Ohmic) conduction in LRS. Simmons Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.
The development prospects of memristive elements for non-volatile memory with use of the metal-dielectric-metal sandwich structures with a thin oxide layer are due to the possibility of reliable forming the sustained functional states with quantized resistance. In the paper we study the properties of fabricated memristors based on the non-stoichiometric $ZrO_2$ nanotubes in different resistive switching modes. Anodic oxidation of the $Zr$ foil has been used to synthesize a zirconia layer of $1.7$ $mu$$m$ thickness, consisting of an ordered array of vertically oriented nanotubes with outer diameter of 75 nm. $Zr/ZrO_2/Au$ sandwich structures have been fabricated by mask magnetron deposition. The effects of resistive switching in the $Zr/ZrO_2/Au$ memristors in unipolar and bipolar modes have been investigated. The resistance ratios $geq3cdot10^4$ between high-resistance (HRS) and low-resistance (LRS) states have been evaluated. It has been founded the conductivity of LRS is quantized in a wide range with minimum value of $0.5G_0=38.74$ $mu$$S$ due to the formation of quantum conductors based on oxygen vacancies ($V_O$). Resistive switching mechanisms of $Zr/ZrO_2/Au$ memristors with allowing for migration of $V_O$ in an applied electric field have been proposed. It has been shown that the ohmic type and space charge limited conductivities are realized in the LRS and HRS, correspondingly. We present the results which can be used for development of effective memristors based on functional $Zr/ZrO_2/Au$ nanolayered structure with multiple resistive states and high resistance ratio.
We report on resistive switching of memristive electrochemical metallization devices using 3D kinetic Monte Carlo simulations describing the transport of ions through a solid state electrolyte of an Ag/TiO$_{text{x}}$/Pt thin layer system. The ion tr ansport model is consistently coupled with solvers for the electric field and thermal diffusion. We show that the model is able to describe not only the formation of conducting filaments but also its dissolution. Furthermore, we calculate realistic current-voltage characteristics and resistive switching kinetics. Finally, we discuss in detail the influence of both the electric field and the local heat on the switching processes of the device.
Films produced by assembling bare gold clusters well beyond the electrical percolation threshold show a resistive switching behavior whose investigation has started only recently. Here we address the challenge to charaterize the resistance of a nanog ranular film starting from limited information on the structure at the microscopic scale by the means of Bruggemans approach to multicomponent media, within the framework of Effective Medium Approximations. The approach is used to build a model that proves that the observed resistive switching can be explained by thermally regulated local structural rearrangements.
We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off states (less than a factor 2). Charge retention times up to 4500 s are observed. The memory effect is mainly attributed to the Au nanoparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا