ترغب بنشر مسار تعليمي؟ اضغط هنا

Liverpool Telescope 2: a new robotic facility for rapid transient follow-up

109   0   0.0 ( 0 )
 نشر من قبل Christopher Copperwheat
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Liverpool Telescope is one of the worlds premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy, wherein events are detected via non-electromagnetic means, such as gravitational wave emission. We describe here our plans for Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the LT at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design.



قيم البحث

اقرأ أيضاً

The robotic 2m Liverpool Telescope, based on the Canary island of La Palma, has a diverse instrument suite and a strong track record in time domain science, with highlights including early time photometry and spectra of supernovae, measurements of th e polarization of gamma-ray burst afterglows, and high cadence light curves of transiting extrasolar planets. In the next decade the time domain will become an increasingly prominent part of the astronomical agenda with new facilities such as LSST, SKA, CTA and Gaia, and promised detections of astrophysical gravitational wave and neutrino sources opening new windows on the transient universe. To capitalise on this exciting new era we intend to build Liverpool Telescope 2: a new robotic facility on La Palma dedicated to time domain science. The next generation of survey facilities will discover large numbers of new transient sources, but there will be a pressing need for follow-up observations for scientific exploitation, in particular spectroscopic follow-up. Liverpool Telescope 2 will have a 4-metre aperture, enabling optical/infrared spectroscopy of faint objects. Robotic telescopes are capable of rapid reaction to unpredictable phenomena, and for fast-fading transients like gamma-ray burst afterglows. This rapid reaction enables observations which would be impossible on less agile telescopes of much larger aperture. We intend Liverpool Telescope 2 to have a world-leading response time, with the aim that we will be taking data with a few tens of seconds of receipt of a trigger from a ground- or space-based transient detection facility. We outline here our scientific goals and present the results of our preliminary optical design studies.
132 - M. Branchesi 2012
Pioneering efforts aiming at the development of multi-messenger gravitational wave and electromagnetic astronomy have been made. An electromagnetic observation follow-up program of candidate gravitational wave events has been performed (Dec 17 2009 t o Jan 8 2010 and Sep 4 to Oct 20 2010) during the recent runs of the LIGO and Virgo gravitational wave detectors. It involved ground-based and space electromagnetic facilities observing the sky at optical, X-ray and radio wavelengths. The joint gravitational wave and electromagnetic observation study requires the development of specific image analysis procedures able to discriminate the possible electromagnetic counterpart of gravitational wave triggers from contaminant/background events. The paper presents an overview of the electromagnetic follow-up program and the image analysis procedures.
The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in th e development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding (partnership) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.
The first direct detection of gravitational waves was made in late 2015 with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events duri ng the first science run, and many facilities were engaged in the search for counterparts. No counterparts were identified, which is in line with expectations given that the events were classified as black hole - black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from September 2015 to January 2016. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (~degrees) fields-of-view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae.
We present an analysis of polarimetric observations of standard stars performed over the period of more than three years with the RINGO3 polarimeter mounted on the Liverpool Telescope. The main objective was to determine the instrumental polarisation of the RINGO3 polarimeter in three spectral energy ranges: blue (350--640~nm), green (650--760~nm) and red (770--1000~nm). The observations were conducted between 2012 and 2016. The total time span of 1126 days was split into five epochs due to the hardware changes to the observing system. Our results should be applied to calibrate all polarimetric observations performed with the RINGO3 polarimeter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا