ترغب بنشر مسار تعليمي؟ اضغط هنا

Liverpool Telescope 2: a new robotic facility for time domain astronomy in 2020+

121   0   0.0 ( 0 )
 نشر من قبل Christopher Copperwheat
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The robotic 2m Liverpool Telescope, based on the Canary island of La Palma, has a diverse instrument suite and a strong track record in time domain science, with highlights including early time photometry and spectra of supernovae, measurements of the polarization of gamma-ray burst afterglows, and high cadence light curves of transiting extrasolar planets. In the next decade the time domain will become an increasingly prominent part of the astronomical agenda with new facilities such as LSST, SKA, CTA and Gaia, and promised detections of astrophysical gravitational wave and neutrino sources opening new windows on the transient universe. To capitalise on this exciting new era we intend to build Liverpool Telescope 2: a new robotic facility on La Palma dedicated to time domain science. The next generation of survey facilities will discover large numbers of new transient sources, but there will be a pressing need for follow-up observations for scientific exploitation, in particular spectroscopic follow-up. Liverpool Telescope 2 will have a 4-metre aperture, enabling optical/infrared spectroscopy of faint objects. Robotic telescopes are capable of rapid reaction to unpredictable phenomena, and for fast-fading transients like gamma-ray burst afterglows. This rapid reaction enables observations which would be impossible on less agile telescopes of much larger aperture. We intend Liverpool Telescope 2 to have a world-leading response time, with the aim that we will be taking data with a few tens of seconds of receipt of a trigger from a ground- or space-based transient detection facility. We outline here our scientific goals and present the results of our preliminary optical design studies.



قيم البحث

اقرأ أيضاً

The Liverpool Telescope is one of the worlds premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with surveys such as LSST providing huge numbers of transient detections on a nightl y basis; transient detections across the electromagnetic spectrum from other facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy, wherein events are detected via non-electromagnetic means, such as gravitational wave emission. We describe here our plans for Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the LT at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design.
Celestial objects exhibit a wide range of variability in brightness at different wavebands. Surprisingly, the most common methods for characterizing time series in statistics -- parametric autoregressive modeling -- is rarely used to interpret astron omical light curves. We review standard ARMA, ARIMA and ARFIMA (autoregressive moving average fractionally integrated) models that treat short-memory autocorrelation, long-memory $1/f^alpha$ `red noise, and nonstationary trends. Though designed for evenly spaced time series, moderately irregular cadences can be treated as evenly-spaced time series with missing data. Fitting algorithms are efficient and software implementations are widely available. We apply ARIMA models to light curves of four variable stars, discussing their effectiveness for different temporal characteristics. A variety of extensions to ARIMA are outlined, with emphasis on recently developed continuous-time models like CARMA and CARFIMA designed for irregularly spaced time series. Strengths and weakness of ARIMA-type modeling for astronomical data analysis and astrophysical insights are reviewed.
We describe a dynamic science portal called the GROWTH Marshal that allows time-domain astronomers to define science programs, program filters to save sources from different discovery streams, co-ordinate follow-up with various robotic or classical t elescopes, analyze the panchromatic follow-up data and generate summary tables for publication. The GROWTH marshal currently serves 137 scientists, 38 science programs and 67 telescopes. Every night, in real-time, several science programs apply various customized filters to the 10^5 nightly alerts from the Zwicky Transient Facility. Here, we describe the schematic and explain the functionality of the various components of this international collaborative platform.
We present an analysis of polarimetric observations of standard stars performed over the period of more than three years with the RINGO3 polarimeter mounted on the Liverpool Telescope. The main objective was to determine the instrumental polarisation of the RINGO3 polarimeter in three spectral energy ranges: blue (350--640~nm), green (650--760~nm) and red (770--1000~nm). The observations were conducted between 2012 and 2016. The total time span of 1126 days was split into five epochs due to the hardware changes to the observing system. Our results should be applied to calibrate all polarimetric observations performed with the RINGO3 polarimeter.
The large-scale surveys such as PTF, CRTS and Pan-STARRS-1 that have emerged within the past 5 years or so employ digital databases and modern analysis tools to accentuate research into Time Domain Astronomy (TDA). Preparations are underway for LSST which, in another 6 years, will usher in the second decade of modern TDA. By that time the Digital Access to a Sky Century @ Harvard (DASCH) project will have made available to the community the full sky Historical TDA database and digitized images for a century (1890--1990) of coverage. We describe the current DASCH development and some initial results, and outline plans for the production scanning phase and data distribution which is to begin in 2012. That will open a 100-year window into temporal astrophysics, revealing rare transients and (especially) astrophysical phenomena that vary on time-scales of a decade. It will also provide context and archival comparisons for the deeper modern surveys
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا