ترغب بنشر مسار تعليمي؟ اضغط هنا

Double-Fock Superposition Interferometry for Differential Diagnosis of Decoherence

99   0   0.0 ( 0 )
 نشر من قبل Malte Tichy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interferometric signals are degraded by decoherence, which encompasses dephasing, mixing and any distinguishing which-path information. These three paradigmatic processes are fundamentally different, but, for coherent, single-photon and $N00N$-states, they degrade interferometric visibility in the very same way, which impedes the diagnosis of the cause for reduced visibility in a single experiment. We introduce a versatile formalism for many-boson interferometry based on double-sided Feynman diagrams, which we apply to a protocol for differential decoherence diagnosis: Twin-Fock states |N,N> with $N ge 2$ reveal to which extent decoherence is due to path distinguishability or to mixing, while double-Fock superpositions $|N:M> = (|N,M> + |M,N>)/sqrt{2} $ with $N > M >0$ additionally witness the degree of dephasing. Hence, double-Fock superposition interferometry permits the differential diagnosis of decoherence processes in a single experiment, indispensable for the assessment of interferometers.



قيم البحث

اقرأ أيضاً

The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) involving a number of photons in excess of 5 x 10^4 motivates the present theoretical and numerical investigation. The results are placed in cl ose comparison with the properties of the well known MQS based on |alpha> states. The very critical decoherence properties of the latter MQS are found to be fully accounted for, in a direct a simple way, by a unique universal function: indeed a new property of the quantum coherent states.
Complex molecules are intriguing objects at the interface between quantum and classical phenomena. Compared to the electrons, neutrons, or atoms studied in earlier matter-wave experiments, they feature a much more complicated internal structure, but can still behave as quantum objects in their center-of-mass motion. Molecules may involve a large number of vibrational modes and highly excited rotational states, they can emit thermal photons, electrons, or even atoms, and they exhibit large cross sections for collisional interactions with residual background gases. This makes them ideal candidates for decoherence experiments which we review in this contribution.
196 - D. Meiser , M. J. Holland 2008
Interferometry with Heisenberg limited phase resolution may play an important role in the next generation of atomic clocks, gravitational wave detectors, and in quantum information science. For experimental implementations the robustness of the phase resolution is crucial since any experimental realization will be subject to imperfections. In this article we study the robustness of phase reconstruction with two number states as input subject to fluctuations in the state preparation. We find that the phase resolution is insensitive to fluctuations in the total number of particles and robust against noise in the number difference at the input. The phase resolution depends on the uncertainty in the number difference in a universal way that has a clear physical interpretation: Fundamental noise due to the Heisenberg limit and noise due to state preparation imperfection contribute essentially independently to the total uncertainty in the phase. For number difference uncertainties less than one the first noise source is dominant and the phase resolution is essentially Heisenberg limited. For number difference uncertainties greater than one the noise due to state preparation imperfection is dominant and the phase resolution deteriorates linearly with the number difference uncertainty.
In this paper, we derive a general expression of the quantum Fisher information of an SU(1,1) interferometer with an arbitrary state and a Fock state as inputs by the phase-averaging method. Our results show that the same quantum Fisher information c an be obtained regardless of the specific form of the arbitrary state. Then, we analytically prove that the parity measurement can saturate the quantum Cramer-Rao bound when the estimated phase sits at the optimal working point. For practical reasons, we investigate the phase sensitivity when the arbitrary state is a coherent or thermal state. We further show that a Fock state can indeed enhance the phase sensitivity within a constraint on the total mean photon number inside the interferometer.
The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) generated by a quantum injected optical parametric amplifier (QI-OPA) and involving a number of photons in excess of 5x10^4 motivates the prese nt theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on coherent states and NOON states, in the perspective of the comprehensive theory of the subject by W.H.Zurek. In that perspective the concepts of pointer state, einselection are applied to the new scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا