ﻻ يوجد ملخص باللغة العربية
An analysis is conducted of the multipartite entanglement for Gaussian states generated by the parametric down-conversion of a femtosecond frequency comb. Using a recently introduced method for constructing optimal entanglement criteria, a family of tests is formulated for mode decompositions that extends beyond the traditional bipartition analyses. A numerical optimization over this family is performed to achieve maximal significance of entanglement verification. For experimentally prepared 4-, 6-, and 10-mode states, full entanglement is certified for all of the 14, 202, and 115974 possible nontrivial partitions, respectively.
We generalize the Schmidt-correlated states to multipartite systems. The related equivalence under SLOCC, the separability, entanglement witness, entanglement measures of negativity, concurrence and relative entropy are investigated in detail for the generalized Schmidt-correlated states.
We investigate genuine multipartite nonlocality of pure permutationally invariant multimode Gaussian states of continuous variable systems, as detected by the violation of Svetlichny inequality. We identify the phase space settings leading to the lar
Based upon standard angular momentum theory, we develop a framework to investigate polarization squeezing and multipartite entanglement of a quantum light field. Both mean polarization and variances of the Stokes parameters are obtained analytically,
We demonstrate that multipartite entanglement is able to characterize one-dimensional symmetry-protected topological order, which is witnessed by the scaling behavior of the quantum Fisher information of the ground state with respect to the spin oper
We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states o