ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplexity versus correlation: the role of local constraints in real multiplexes

152   0   0.0 ( 0 )
 نشر من قبل Valerio Gemmetto
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Several real-world systems can be represented as multi-layer complex networks, i.e. in terms of a superposition of various graphs, each related to a different mode of connection between nodes. Hence, the definition of proper mathematical quantities aiming at capturing the level of complexity of those systems is required. Various attempts have been made to measure the empirical dependencies between the layers of a multiplex, for both binary and weighted networks. In the simplest case, such dependencies are measured via correlation-based metrics: we show that this is equivalent to the use of completely homogeneous benchmarks specifying only global constraints, such as the total number of links in each layer. However, these approaches do not take into account the heterogeneity in the degree and strength distributions, which are instead a fundamental feature of real-world multiplexes. In this work, we compare the observed dependencies between layers with the expected values obtained from reference models that appropriately control for the observed heterogeneity in the degree and strength distributions. This leads to novel multiplexity measures that we test on different datasets, i.e. the International Trade Network (ITN) and the European Airport Network (EAN). Our findings confirm that the use of homogeneous benchmarks can lead to misleading results, and furthermore highlight the important role played by the distribution of hubs across layers.



قيم البحث

اقرأ أيضاً

Real-world multi-layer networks feature nontrivial dependencies among links of different layers. Here we argue that, if links are directed, dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of `multiplexity, there is also a tendency to anti-align as the result of what we call `multireciprocity, i.e. the fact that links in one layer can be reciprocated by emph{opposite} links in a different layer. Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes and validate their statistical significance against maximum-entropy null models that filter out the effects of node heterogeneity. We then perform a detailed empirical analysis of the World Trade Multiplex (WTM), representing the import-export relationships between world countries in different commodities. We show that the WTM exhibits strong multiplexity and multireciprocity, an effect which is however largely encoded into the degree or strength sequences of individual layers. The residual effects are still significant and allow to classify pairs of commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups of related commodities rather than to individual commodities. We discuss the implications for international trade research focusing on product taxonomies, the product space, and fitness/complexity metrics.
Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a nodes degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.
Many complex systems involve direct interactions among more than two entities and can be represented by hypergraphs, in which hyperedges encode higher-order interactions among an arbitrary number of nodes. To analyze structures and dynamics of given hypergraphs, a solid practice is to compare them with those for randomized hypergraphs that preserve some specific properties of the original hypergraphs. In the present study, we propose a family of such reference models for hypergraphs, called the hyper dK-series, by extending the so-called dK-series for dyadic networks to the case of hypergraphs. The hyper dK-series preserves up to the individual nodes degree, nodes degree correlation, nodes redundancy coefficient, and/or the hyperedges size depending on the parameter values. We also apply the hyper dK-series to numerical simulations of epidemic spreading and evolutionary game dynamics on empirical hypergraphs.
142 - F. Gargiulo , Y. Gandica 2016
Understanding the emergence of strong controversial issues in modern societies is a key issue in opinion studies. A commonly diffused idea is the fact that the increasing of homophily in social networks, due to the modern ICT, can be a driving force for opinion polariation. In this paper we address the problem with a modelling approach following three basic steps. We first introduce a network morphogenesis model to reconstruct network structures where homophily can be tuned with a parameter. We show that as homophily increases the emergence of marked topological community structures in the networks raises. Secondly, we perform an opinion dynamics process on homophily dependent networks and we show that, contrary to the common idea, homophily helps consensus formation. Finally, we introduce a tunable external media pressure and we show that, actually, the combination of homophily and media makes the media effect less effective and leads to strongly polarized opinion clusters.
We deduce and discuss the implications of self-similarity for the stability in terms of robustness to failure of multiplexes, depending on interlayer degree correlations. First, we define self-similarity of multiplexes and we illustrate the concept i n practice using the configuration model ensemble. Circumscribing robustness to survival of the mutually percolated state, we find a new explanation based on self-similarity both for the observed fragility of interconnected systems of networks and for their robustness to failure when interlayer degree correlations are present. Extending the self-similarity arguments, we show that interlayer degree correlations can change completely the stability properties of self-similar multiplexes, so that they can even recover a zero percolation threshold and a continuous transition in the thermodynamic limit, qualitatively exhibiting thus the ordinary stability attributes of noninteracting networks. We confirm these results with numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا