ﻻ يوجد ملخص باللغة العربية
We deduce and discuss the implications of self-similarity for the stability in terms of robustness to failure of multiplexes, depending on interlayer degree correlations. First, we define self-similarity of multiplexes and we illustrate the concept in practice using the configuration model ensemble. Circumscribing robustness to survival of the mutually percolated state, we find a new explanation based on self-similarity both for the observed fragility of interconnected systems of networks and for their robustness to failure when interlayer degree correlations are present. Extending the self-similarity arguments, we show that interlayer degree correlations can change completely the stability properties of self-similar multiplexes, so that they can even recover a zero percolation threshold and a continuous transition in the thermodynamic limit, qualitatively exhibiting thus the ordinary stability attributes of noninteracting networks. We confirm these results with numerical simulations.
Core collapse is a prominent evolutionary stage of self-gravitating systems. In an idealised collisionless approximation, the region around the cluster core evolves in a self-similar way prior to the core collapse. Thus, its radial density profile ou
Real-world multi-layer networks feature nontrivial dependencies among links of different layers. Here we argue that, if links are directed, dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of
We model self-assembly of information in networks to investigate necessary conditions for building a global perception of a system by local communication. Our approach is to let agents chat in a model system to self-organize distant communication-pat
We study a mechanism of activity sustaining on networks inspired by a well-known model of neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity patterns, where no single node can stay active by itself, but the a
A self-similar solution for time evolution of isothermal, self-gravitating viscous disks is found under the condition that $alpha equiv alpha (H/r)$ is constant in space (where $alpha$ is the viscosity parameter and $H/r$ is the ratio of a half-thick