ﻻ يوجد ملخص باللغة العربية
Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.
Currently, dual-energy X-ray phase contrast imaging is usually conducted with an X-ray Talbot-Lau interferometer. However, in this system, the two adopted energy spectra have to be chosen carefully in order to match well with the phase grating. For e
Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted
Purpose: Dual-energy CT (DECT) has been shown to derive stopping power ratio (SPR) map with higher accuracy than conventional single energy CT (SECT) by obtaining the energy dependence of photon interactions. However, DECT is not as widely implemente
Chromatic properties of the multi-prism and prism-array X-ray lenses (MPL and PAL) can potentially be utilized for efficient energy filtering and dose reduction in mammography. The line-shaped foci of the lenses are optimal for coupling to photon-cou
In dual-energy computed tomography (DECT), low- and high- kVp data are collected often over a full-angular range (FAR) of $360^circ$. While there exists strong interest in DECT with low- and high-kVp data acquired over limited-angular ranges (LARs),