ﻻ يوجد ملخص باللغة العربية
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($ttoinfty$, $Ntoinfty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the critical dimension $d_{rm c}=2$.
We consider a random walk on the fully-connected lattice with $N$ sites and study the time evolution of the number of distinct sites $s$ visited by the walker on a subset with $n$ sites. A record value $v$ is obtained for $s$ at a record time $t$ whe
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function appr
Random walks on discrete lattices are fundamental models that form the basis for our understanding of transport and diffusion processes. For a single random walker on complex networks, many properties such as the mean first passage time and cover tim
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step le
We discuss a channel consisting of nodes of a network and lines which connect these nodes and form ways for motion of a substance through the channel. We study stationary flow of substance for channel which arms contain finite number of nodes each an