ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy, pseudo-orbit tracing property and positively expansive measures

127   0   0.0 ( 0 )
 نشر من قبل C. A. Morales
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف C.A. Morales




اسأل ChatGPT حول البحث

We study homeomorphisms of compact metric spaces whose restriction to the nonwandering set has the pseudo-orbit tracing property. We prove that if there are positively expansive measures, then the topological entropy is positive. Some short applications of this result are included.



قيم البحث

اقرأ أيضاً

162 - C.A. Morales 2016
We prove that a homeomorphism of a compact metric space has an expansive measure cite{ms} if and only if it has many ones with invariant support. We also study homeomorphisms for which the expansive measures are dense in the space of Borel probabilit y measures. It is proved that these homeomorphisms exhibit a dense set of Borel probability measures which are expansive with full support. Therefore, their sets of heteroclinic points has no interior and the spaces supporting them have no isolated points.
A dynamical system is a pair $(X,G)$, where $X$ is a compact metrizable space and $G$ is a countable group acting by homeomorphisms of $X$. An endomorphism of $(X,G)$ is a continuous selfmap of $X$ which commutes with the action of $G$. One says that a dynamical system $(X,G)$ is surjunctive provided that every injective endomorphism of $(X,G)$ is surjective (and therefore is a homeomorphism). We show that when $G$ is sofic, every expansive dynamical system $(X,G)$ with nonnegative sofic topological entropy and satisfying the weak specification and the strong topological Markov properties, is surjunctive.
In this paper we will develop a very general approach which shows that critical relations of holomorphic maps on the complex plane unfold transversally in a positively oriented way. We will mainly illustrate this approach to obtain transversality for a wide class of one-parameter families of interval maps, for example maps with flat critical points, piecewise linear maps, maps with discontinuities but also for families of maps with complex analytic extensions such as certain polynomial-like maps.
109 - David Kerr , Hanfeng Li 2020
We prove that if two topologically free and entropy regular actions of countable sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group either (i) contains a w-normal amenable subgroup which is neither locally fin ite nor virtually cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic and entropy regular probability-measure-preserving actions of such groups are boundedly orbit equivalent then the actions have the same sofic measure entropy. Our arguments are based on a relativization of property SC to sofic approximations and yield more general entropy inequalities.
173 - Lin Wang , Yujun Zhu 2015
Let $f$ be a partially hyperbolic diffeomorphism on a closed (i.e., compact and boundaryless) Riemannian manifold $M$ with a uniformly compact center foliation $mathcal{W}^{c}$. The relationship among topological entropy $h(f)$, entropy of the restri ction of $f$ on the center foliation $h(f, mathcal{W}^{c})$ and the growth rate of periodic center leaves $p^{c}(f)$ is investigated. It is first shown that if a compact locally maximal invariant center set $Lambda$ is center topologically mixing then $f|_{Lambda}$ has the center specification property, i.e., any specification with a large spacing can be center shadowed by a periodic center leaf with a fine precision. Applying the center spectral decomposition and the center specification property, we show that $ h(f)leq h(f,mathcal{W}^{c})+p^{c}(f)$. Moreover, if the center foliation $mathcal{W}^{c}$ is of dimension one, we obtain an equality $h(f)= p^{c}(f)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا