ﻻ يوجد ملخص باللغة العربية
Interfaces advancing through random media represent a number of different problems in physics, biology and other disciplines. Here, we study the pinning/depinning transition of the prototypical non-equilibrium interfacial model, i.e. the Kardar-Parisi-Zhang equation, advancing in a disordered medium. We analyze separately the cases of positive and negative non-linearity coefficients, which are believed to exhibit qualitatively different behavior: the positive case shows a continuous transition that can be related to directed-percolation-depinning while in the negative case there is a discontinuous transition and faceted interfaces appear. Some studies have argued from different perspectives that both cases share the same universal behavior. Here, by using a number of computational and scaling techniques we shed light on this puzzling situation and conclude that the two cases are intrinsically different.
We study Levy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric pr
We make a review of the two principal models that allows to explain the imbibition of fluid in porous media. These models, that belong to the directed percolation depinning (DPD) universality class, where introduced simultaneously by the Tang and Les
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be
We show that near a second order phase transition in a two-component elastic medium of size L in two dimensions, where the local elastic deformation-order parameter couplings can break the inversion symmetry of the order parameter, the elastic moduli
We study the geometrical characteristic of quasi-static fractures in disordered media, using iterated conformal maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution of the Lame equations witho