ﻻ يوجد ملخص باللغة العربية
We study the geometrical characteristic of quasi-static fractures in disordered media, using iterated conformal maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution of the Lame equations without resorting to lattice models. Typical fracture patterns exhibit increased ramification due to the increase of the stress at the tips. We find the roughness exponent of the experimentally relevant backbone of the fracture pattern; it crosses over from about 0.5 for small scales to about 0.75 for large scales, in excellent agreement with experiments. We propose that this cross-over reflects the increased ramification of the fracture pattern.
We study Levy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric pr
Operators in ergodic spin-chains are found to grow according to hydrodynamical equations of motion. The study of such operator spreading has aided our understanding of many-body quantum chaos in spin-chains. Here we initiate the study of operator spr
We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a differe
We make a review of the two principal models that allows to explain the imbibition of fluid in porous media. These models, that belong to the directed percolation depinning (DPD) universality class, where introduced simultaneously by the Tang and Les
We derive a systematic, multiple time-scale perturbation expansion for the work distribution in isothermal quasi-static Langevin processes. To first order we find a Gaussian distribution reproducing the result of Speck and Seifert [Phys. Rev. E 70, 0