ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond

151   0   0.0 ( 0 )
 نشر من قبل Takehide Miyazaki
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nitrogen-vacancy (NV) centers in diamond have attracted a great deal of attention because of their possible use in information processing and electromagnetic sensing technologies. We examined theatomistic generation mechanism for the NV defect aligned in the [111] direction of C(111) substrates. We found that N is incorporated in the C bilayers during the lateral growth arising from a sequence of kink propagation along the step edge down to [-1,-1,2]. As a result, the atomic configuration with the N-atom lone-pair pointing in the [111] direction is formed, which causes preferential alignment of NVs. Our model is consistent with recent experimental data for perfect NV alignment in C(111) substrates.



قيم البحث

اقرأ أيضاً

145 - T. Fukui , Y. Doi , T. Miyazaki 2014
Nitrogen-vacancy (NV) centers in diamond have attracted significant interest because of their excellent spin and optical characteristics for quantum information and metrology. To take advantage of the characteristics, the precise control of the orien tation of the N-V axis in the lattice is essential. Here we show that the orientation of more than 99 % of the NV centers can be aligned along the [111]-axis by CVD homoepitaxial growth on (111)-substrates. We also discuss about mechanisms of the alignment. Our result enables a fourfold improvement in magnetic-field sensitivity and opens new avenues to the optimum design of NV center devices.
208 - A. M. Edmonds 2011
The negatively charged nitrogen-vacancy (NV-) center in diamond is an attractive candidate for applications that range from magnetometry to quantum information processing. Here we show that only a fraction of the nitrogen (typically < 0.5 %) incorpor ated during homoepitaxial diamond growth by Chemical Vapor Deposition (CVD) is in the form of undecorated NV- centers. Furthermore, studies on CVD diamond grown on (110) oriented substrates show a near 100% preferential orientation of NV- centers along only the [111] and [-1-11] directions, rather than the four possible orientations. The results indicate that NV centers grow in as units, as the diamond is deposited, rather than by migration and association of their components. The NV unit of the NVH- is similarly preferentially oriented, but it is not possible to determine whether this defect was formed by H capture at a preferentially aligned NV center or as a complete unit. Reducing the number of NV orientations from 4 orientations to 2 orientations should lead to increased optically-detected magnetic resonance contrast and thus improved magnetic sensitivity in ensemble-based magnetometry.
Synthetic diamond production is key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers that is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor decomposition (MPCVD) diamond growth technique on (111)-oriented substrates that yields perfect alignment ($94pm2%$) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority ($74pm4%$) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications.
We show a marked reduction in the emission from nitrogen-vacancy (NV) color centers in single crystal diamond due to exposure of the diamond to hydrogen plasmas ranging from 700{deg}C to 1000{deg}C. Significant fluorescence reduction was observed ben eath the exposed surface to at least 80mm depth after ~10 minutes, and did not recover after post-annealing in vacuum for seven hours at 1100{deg}C. We attribute the fluorescence reduction to the formation of NVH centers by the plasma induced diffusion of hydrogen. These results have important implications for the formation of nitrogen-vacancy centers for quantum applications, and inform our understanding of the conversion of nitrogen-vacancy to NVH, whilst also providing the first experimental evidence of long range hydrogen diffusion through intrinsic high-purity diamond material.
Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spe ctrum from 15NV- arising from implanted 15N can be distinguished from 14NV- centers created by native 14N (I = 1) sites. Analysis indicates 1 in 40 implanted 15N atoms give rise to an optically observable 15NV- center. This report ultimately demonstrates a mechanism by which the yield of NV- center formation by nitrogen implantation can be measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا