ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of oriented nitrogen-vacancy color centers in synthetic diamond

197   0   0.0 ( 0 )
 نشر من قبل Mark Newton
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. M. Edmonds




اسأل ChatGPT حول البحث

The negatively charged nitrogen-vacancy (NV-) center in diamond is an attractive candidate for applications that range from magnetometry to quantum information processing. Here we show that only a fraction of the nitrogen (typically < 0.5 %) incorporated during homoepitaxial diamond growth by Chemical Vapor Deposition (CVD) is in the form of undecorated NV- centers. Furthermore, studies on CVD diamond grown on (110) oriented substrates show a near 100% preferential orientation of NV- centers along only the [111] and [-1-11] directions, rather than the four possible orientations. The results indicate that NV centers grow in as units, as the diamond is deposited, rather than by migration and association of their components. The NV unit of the NVH- is similarly preferentially oriented, but it is not possible to determine whether this defect was formed by H capture at a preferentially aligned NV center or as a complete unit. Reducing the number of NV orientations from 4 orientations to 2 orientations should lead to increased optically-detected magnetic resonance contrast and thus improved magnetic sensitivity in ensemble-based magnetometry.



قيم البحث

اقرأ أيضاً

We show a marked reduction in the emission from nitrogen-vacancy (NV) color centers in single crystal diamond due to exposure of the diamond to hydrogen plasmas ranging from 700{deg}C to 1000{deg}C. Significant fluorescence reduction was observed ben eath the exposed surface to at least 80mm depth after ~10 minutes, and did not recover after post-annealing in vacuum for seven hours at 1100{deg}C. We attribute the fluorescence reduction to the formation of NVH centers by the plasma induced diffusion of hydrogen. These results have important implications for the formation of nitrogen-vacancy centers for quantum applications, and inform our understanding of the conversion of nitrogen-vacancy to NVH, whilst also providing the first experimental evidence of long range hydrogen diffusion through intrinsic high-purity diamond material.
The photoluminescence of nitrogen-vacancy (NV) centers in diamond nanoparticles exhibits specific properties as compared to NV centers in bulk diamond. For instance large fluctuations of lifetime and brightness from particle to particle have been rep orted. It has also been observed that for nanocrystals much smaller than the mean luminescence wavelength, the particle size sets a lower threshold for resolution in Stimulated Emission Depletion (STED) microscopy. We show that all these features can be quantitatively understood by realizing that the absorption-emission of light by the NV center is mediated by the diamond nanoparticle which behaves as a dielectric nanoantenna.
Nitrogen-vacancy (NV) centers in diamond have attracted a great deal of attention because of their possible use in information processing and electromagnetic sensing technologies. We examined theatomistic generation mechanism for the NV defect aligne d in the [111] direction of C(111) substrates. We found that N is incorporated in the C bilayers during the lateral growth arising from a sequence of kink propagation along the step edge down to [-1,-1,2]. As a result, the atomic configuration with the N-atom lone-pair pointing in the [111] direction is formed, which causes preferential alignment of NVs. Our model is consistent with recent experimental data for perfect NV alignment in C(111) substrates.
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal f luorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was measured to be 60 to 70 nm. The findings highlight a strong dependence of NV incorporation on crystal size, particularly with crystals less than 50 nm in size.
Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spe ctrum from 15NV- arising from implanted 15N can be distinguished from 14NV- centers created by native 14N (I = 1) sites. Analysis indicates 1 in 40 implanted 15N atoms give rise to an optically observable 15NV- center. This report ultimately demonstrates a mechanism by which the yield of NV- center formation by nitrogen implantation can be measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا